MAT 3530 Homework \#1

due 28. August 2015
Chas Lewis

Question 1.1. The power set of a finite set A is the set $\mathcal{P}(A)$ of all subsets of A. Determine a formula for $\# \mathcal{P}(A)$ in terms of $\# A$. Prove your formula is correct.

Proof. If the power set of $\mathcal{P}(\mathrm{A})$ contains the totality of all elements in A ie $\mathrm{a} \in \mathrm{A}$ and $\mathrm{A} \in P(\mathrm{~A})$, then there also exists a relation between the cardinality of P and the cardinality of A . We can show this by example $\mathrm{A}=\{1,2\}$ therefore $P(\mathrm{~A})=[\{0\},\{1\}] \cup P(2)=[\{2\}]$. So the cardinality of $P(1)$ equals the cardinality of A , therefore we can show the cardinality of a added to the cardinality of $P(1)$ equals the cardinality of $P(\mathrm{~A})$.
Question 1.2. Let $f: X \rightarrow Y$ be a function, and let $A, B \subset X$.
(i) Prove $f(A \cup B)=f(A) \cup f(B)$.

We first need to show $f(A \cup B) \subset f(A) \cup f(B)$ Let's say $y \in f(A \cup B)$, and there is $x \in f(A)$ or $x \in B$ so $f(x) \in f(B)$ in either case $y=f(x) \in f(A) \cup f(B)$ secondly we need to show $f(A) \cup f(B) \subset f(A \cup B) \quad y \in f(A) \cup f(B)$, so $y \in f(A)$ or $y \in f(B)$ if $y \in f(A)$, then there is $a \in A$ so $f(a)=y$ such that $y=f(A) \in f(A \cup B)$ since $a \in f(A \cup B)$ also if $y=f(B)$, then $y \in f(A \cup B)$ and the equality is complete.
(ii) Prove $f(A \cap B) \subset f(A) \cap f(B)$. Say $y \in f(A \cap B)$ and $x \in A \cap B$ so I can then say that $x \in A, y \in f(A)$ and $x \in b$ and $y \in f(B)$. So $y \in \subset f(A) \cap f(B)$.
(iii) Find a counterexample to $f(A \cap B)=f(A) \cap f(B)$.

Proof. Let's say A $=\{1,2\}$ and $\mathrm{b}=\{1,3\}$. Now we multiply A, which yields $\mathrm{A}^{*} \mathrm{~A}=\{1,2,2,4\}$ and $B^{*} A=\{1,3,3,9\}$. Now, $f(A \cap B)=\{1,2\}$ but $f(A) \cap f(B)=\{1,0\}$.

Question 1.3. Define the relation \sim on \mathbb{Q} by $r \sim s$ if and only if $r-s \in \mathbb{Z}$. Prove \sim is an equivalence relation.

Proof. We know that $\mathbb{Z} \subset \mathbb{Q}$ and if $\mathrm{c} \in \mathrm{r}$-s then $\mathrm{c} \in \mathbb{Q}$ and $\mathrm{c} \in \mathbb{Z}$ so $\mathrm{r} \sim \mathrm{s}, \mathrm{r} \sim \mathrm{c}$, and $\mathrm{s} \sim \mathrm{c}$ so it is transitive. also, $r-r \in \mathbb{Z}, \mathbb{Q}$ and $s-s \in \mathbb{Z}, \mathbb{Q}$ so it is reflexive. Finally since r-s $\in \mathbb{Z}$ then s-r $\in \mathbb{Z}$ because $\mathrm{r} \sim \mathrm{s}$ so it is symmetric.

Question 1.4. Let $f: X \rightarrow Y$ be a function. Prove that the relation $u \sim v$ if and only if $f(u)=f(v)$ is an equivalence relation.

Proof. Say $u \in x$ and $v \in y$ if $f(u)=f(v)$ and $v \in f(v)$ and $u \in f(u)$ then $f(v) \sim f(u)$ and this show reflexive as well as symmetric. If $\mathrm{c} \in \mathrm{y}$ then $\mathrm{c} \in \mathrm{f}(\mathrm{v}), \mathrm{f}(\mathrm{u})$ thus $\mathrm{c} \sim \mathrm{u}, \mathrm{c} \sim \mathrm{v}$, and of course $\mathrm{u} \sim \mathrm{v}$ which is transitive.

