MAT 3530 Homework #1 due 28. August 2015 Chas Lewis

Question 1.1. The power set of a finite set A is the set $\mathcal{P}(A)$ of all subsets of A. Determine a formula for $\#\mathcal{P}(A)$ in terms of #A. Prove your formula is correct.

Proof. If the power set of $\mathcal{P}(A)$ contains the totality of all elements in A is $a \in A$ and $A \in \mathcal{P}(A)$, then there also exists a relation between the cardinality of P and the cardinality of A. We can show this by example $A = \{1,2\}$ therefore $P(A) = [\{0\},\{1\}] \cup P(2) = [\{2\}]$. So the cardinality of P(1) equals the cardinality of A, therefore we can show the cardinality of a added to the cardinality of P(1) equals the cardinality of P(A).

Question 1.2. Let $f : X \to Y$ be a function, and let $A, B \subset X$.

- (i) Prove f(A∪B) = f(A) ∪ f(B).
 We first need to show f(A∪B) ⊂ f(A) ∪f(B) Let's say y∈f(A∪B), and there is x∈f(A) or x∈B so f(x)∈f(B) in either case y=f(x)∈f(A)∪f(B) secondly we need to show f(A)∪f(B) ⊂ f(A∪B) y∈f(A)∪f(B), so y∈f(A) or y∈f(B) if y∈f(A), then there is a∈A so f(a)=y such that y=f(A)∈f(A∪B) since a∈f(A∪B) also if y=f(B), then y∈f(A∪B) and the equality is complete.
- (ii) Prove $f(A \cap B) \subset f(A) \cap f(B)$. Say $y \in f(A \cap B)$ and $x \in A \cap B$ so I can then say that $x \in A$, $y \in f(A)$ and $x \in b$ and $y \in f(B)$. So $y \in Cf(A) \cap f(B)$.
- (iii) Find a counterexample to $f(A \cap B) = f(A) \cap f(B)$.

Proof. Let's say A = {1,2} and b = {1,3}. Now we multiply A, which yields A*A={1,2,2,4} and B*A={1,3,3,9}. Now, $f(A\cap B)=\{1,2\}$ but $f(A)\cap f(B)=\{1,0\}$. □

Question 1.3. Define the relation \sim on \mathbb{Q} by $r \sim s$ if and only if $r - s \in \mathbb{Z}$. Prove \sim is an equivalence relation.

Proof. We know that $\mathbb{Z}\subset\mathbb{Q}$ and if $c\in r$ -s then $c\in\mathbb{Q}$ and $c\in\mathbb{Z}$ so $r\sim s$, $r\sim c$, and $s\sim c$ so it is transitive. also, $r-r\in\mathbb{Z},\mathbb{Q}$ and $s-s\in\mathbb{Z},\mathbb{Q}$ so it is reflexive. Finally since $r-s\in\mathbb{Z}$ then $s-r\in\mathbb{Z}$ because $r\sim s$ so it is symmetric.

Question 1.4. Let $f : X \to Y$ be a function. Prove that the relation $u \sim v$ if and only if f(u) = f(v) is an equivalence relation.

Proof. Say $u \in x$ and $v \in y$ if f(u)=f(v) and $v \in f(v)$ and $u \in f(u)$ then $f(v) \sim f(u)$ and this show reflexive as well as symmetric. If $c \in y$ then $c \in f(v), f(u)$ thus $c \sim u, c \sim v$, and of course $u \sim v$ which is transitive.