Assignment 4

Frank Yang

February 8, 2014

1 Homework list

- Section 3.1: 18
- Section 3.2: 6, 8, 13
- Section 4.1: 4e, 8, 11, 19, 22ab, 24

2 Solution

18 Assume a is an odd integer. By definition, there exists an integer k such that a = 2k + 1.

$$a^{2} - 1 = (2k + 1)^{2} - 1 = (4k^{2} + 4k + 1) - 1 = 4k^{2} + 4k = 4(k^{2} + k)$$

Let $p = k^2 + k$. So $a^2 - 1 = 4p$, which means that 4 is a factor of $a^2 - 1$.

6 Based on our previous proof, we grant that $\sqrt{2}$ is not rational. We would prove all following statements by contradiction.

(a) Suppose $-\sqrt{2}$ is rational. By definition, there exists two integers m, n such that $-\sqrt{2} = \frac{m}{n}$. So $\sqrt{2} = \frac{-m}{n}$. Let p = -m. $\sqrt{2} = \frac{p}{n}$, where p and n are two integers. It contradicts our assumption that $\sqrt{2}$ is not rational. Thus, $-\sqrt{2} \notin \mathbb{Q}$.

(b) Suppose $1 + \sqrt{2}$ is rational. By definition, there exists two integers m, n such that $1 + \sqrt{2} = \frac{m}{n}$. So $\sqrt{2} = \frac{m-n}{n}$. Let p = m - n. $\sqrt{2} = \frac{p}{n}$, where p and n are two integers. It contradicts our assumption that $\sqrt{2}$ is not rational. Thus, $1 + \sqrt{2} \notin \mathbb{Q}$.

(c) Suppose $3 + \sqrt{2}$ is rational. By definition, there exists two integers m, n such that $3 + \sqrt{2} = \frac{m}{n}$. So $\sqrt{2} = \frac{m-3n}{n}$. Let p = m - 3n. $\sqrt{2} = \frac{p}{n}$, where p and n are two integers. It contradicts our assumption that $\sqrt{2}$ is not rational. Thus, $3 + \sqrt{2} \notin \mathbb{Q}$.

(d) Suppose $r + \sqrt{2}$ is rational, where r is also a rational number. By definition, there exists two integers m, n such that $r + \sqrt{2} = \frac{m}{n}$. Similarly, there exists two integers t, k such that $r = \frac{t}{k}$ since r itself is a rational number. Then,

$$\sqrt{2} = \frac{m}{n} - \frac{\iota}{k}$$
$$\sqrt{2} = \frac{km - nt}{nk}$$

Let p = km - nt and q = nk. $\sqrt{2} = \frac{p}{q}$, where p and q are two integers. It contradicts our assumption that $\sqrt{2}$ is not rational. Thus, $r + \sqrt{2} \notin \mathbb{Q}$.

8 We give a proof by contradiction. Assume $\log_2(5)$ is rational. By definition, there exists two integers m, n such that $\log_2(5) = \frac{m}{n}$. Then,

$$2^{\log_2(5)} = 2^{\frac{m}{r}}$$
$$5 = 2^{\frac{m}{n}}$$
$$5^n = 2^m$$

Apparently, 5^n is odd and 2^m is even. 5^n can never equal to 2^m for any two integers m, n. Thus, $\log_2(5)$ is not rational.

13 We give a proof by contradiction. Assume rx is rational, where r is a rational number but $\neq 0$ and x is not rational. By definition, there exists two integers m, n such that $rx = \frac{m}{n}$. Similarly, there exists two integers t, k such that $r = \frac{t}{k}$, since r itself is a rational number. And since $r \neq 0, t$ is not 0. Then,

$$rx = \frac{tx}{k} = \frac{m}{n}$$
$$txn = mk$$
$$x = \frac{mk}{tn}$$

Let p = mk and q = tn. $x = \frac{p}{q}$, where p and q are two integers. It contradicts our assumption that x is not a rational number. Thus, if r is rational and $\neq 0$ and x is irrational, then rx is irrational.

4e $(A - C) = (A - B) \cup (B - C)$ is not true.

Assume $A = \{1, 2\}$ $B = \{2, 3\}$ $C = \{1, 3\}$ $(A - C) = \{2\}$ $(B - C) = \{2\}$ $(A - B) = \{1\}$ $(A - B) \cup (B - C) = \{1, 2\} \neq (A - C)$ Salveage: $(A - C) \subseteq (A - B) \cup (B - C)$ Proof: Assume $a \in (A - C)$. Then $a \in A$ a

Proof: Assume $x \in (A - C)$. Then, $x \in A$ and $x \notin C$. Either $x \in B$ or $x \notin B$. So, either $x \in B$ and $\notin C$, or $x \notin B$ and $x \in A$. So $x \in (B - C)$ or $x \in (A - B)$. So $x \in (A - B) \cup (B - C)$. Thus, $(A - C) \subseteq (A - B) \cup (B - C)$

8 (a) Assume $A \subseteq B$. So for all set X that $X \subseteq A$, $X \subseteq B$. Since every element in P(A) must be an subset of A, which means it must be an subset of B. And every subset of $B \in P(B)$. So every element in P(A) is also an element in P(B). Thus, $P(A) \subseteq P(B)$.

(b) By definition, for all element $X \in P(A \cap B)$, $X \subseteq (A \cap B)$. So, $X \subseteq A$ and $X \subseteq B$. Since $X \subseteq A$, $X \in P(A)$. Similarly, since $X \subseteq B$, $X \in P(B)$. So $X \in (P(A) \cap P(B))$. Thus $P(A \cap B) \subseteq (P(A) \cap P(B))$. Since all previous steps are reversible. $(P(A) \cap P(B)) \subseteq P(A \cap B)$. Thus $P(A \cap B) = P(A) \cap P(B)$.

(c) $P(A \cup B) = P(A) \cup P(B)$

By definition, for all element $X \in P(A \cup B)$, $X \subseteq (A \cup B)$. So, $X \subseteq A$ or $X \subseteq B$. So $X \in P(A)$ or $X \in P(B)$. So $X \in (P(A) \cup P(B))$. Thus $P(A \cup B) \subseteq (P(A) \cup P(B))$. Since all previous steps are reversible. $(P(A) \cup P(B)) \subseteq P(A \cup B)$. Thus $P(A \cup B) = P(A) \cup P(B)$.

- 11 On the last page.
- 19 Proof by contrapositive: Assume $B \neq C$. There exists an element x that (x in B but not in C) or (x in C but not in B). Because B and C are symmetrical in this statement (swatching B and C will give us same proposition). Just assume x in B but not in C. For an element $a \in A$, the ordered pair (a, x) will be in $A \times B$ but not in $A \times C$, since $x \notin C$. So $A \times B \neq A \times C$. Thus, if $A \times B = A \times C$, B = C.

22a True.

Assume ordered pair $(p,q) \in A \times (B-C)$. So $p \in A$ and $q \in B$ and $q \notin C$. So $(p,q) \in A \times B$ and $(p,q) \notin A \times C$. So $(p,q) \in (A \times B - A \times C)$. Thus, $A \times (B-C) \subseteq A \times B - A \times C$. Since previous steps are all reversible, $A \times B - A \times C \subseteq A \times (B-C)$. So $A \times (B-C) = A \times B - A \times C$.

22b False.

Counterexample: Assume $A = \{1\}$ $B = \{2\}$ $U = \{1, 2\}$ $A \times B = \{(1, 2)\}$ $U^2 = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$ $(A \times B)^c = \{(1, 1), (2, 1), (2, 2)\}$ $A^c \times B^c = \{(2, 1)\}$ Thus, $(A \times B)^c \neq A^c \times B^c$.

24 (a){[0,1], [1,2], [2,3], [3,4], [4,5], [5,6], [6,7], [7,8], [8,9], [9,10], [10,11]} (b) $B_1 = (0,2), B_{10} = (0.9, 1.1), B_{100} = (0.99, 1.01)$