# Assignment 4 

Frank Yang

February 8, 2014

## 1 Homework list

- Section 3.1: 18
- Section 3.2: 6, 8, 13
- Section 4.1: 4e, 8, 11, 19, 22ab, 24


## 2 Solution

18 Assume $a$ is an odd integer.By definition, there exists an integer $k$ such that $a=2 k+1$.

$$
a^{2}-1=(2 k+1)^{2}-1=\left(4 k^{2}+4 k+1\right)-1=4 k^{2}+4 k=4\left(k^{2}+k\right)
$$

Let $p=k^{2}+k$. So $a^{2}-1=4 p$, which means that 4 is a factor of $a^{2}-1$.
6 Based on our previous proof, we grant that $\sqrt{2}$ is not rational. We would prove all following statements by contradiction.
(a) Suppose $-\sqrt{2}$ is rational. By definition, there exists two integers $m, n$ such that $-\sqrt{2}=\frac{m}{n}$. So $\sqrt{2}=\frac{-m}{n}$. Let $p=-m . \sqrt{2}=\frac{p}{n}$, where $p$ and $n$ are two integers. It contradicts our assumption that $\sqrt{2}$ is not rational. Thus, $-\sqrt{2} \notin \mathbb{Q}$.
(b) Suppose $1+\sqrt{2}$ is rational. By definition, there exists two integers $m, n$ such that $1+\sqrt{2}=\frac{m}{n}$. So $\sqrt{2}=\frac{m-n}{n}$. Let $p=m-n . \sqrt{2}=\frac{p}{n}$, where $p$ and $n$ are two integers. It contradicts our assumption that $\sqrt{2}$ is not rational. Thus, $1+\sqrt{2} \notin \mathbb{Q}$.
(c) Suppose $3+\sqrt{2}$ is rational. By definition, there exists two integers $m, n$ such that $3+\sqrt{2}=\frac{m}{n}$. So $\sqrt{2}=\frac{m-3 n}{n}$. Let $p=m-3 n . \sqrt{2}=\frac{p}{n}$, where $p$ and $n$ are two integers. It contradicts our assumption that $\sqrt{2}$ is not rational. Thus, $3+\sqrt{2} \notin \mathbb{Q}$.
(d) Suppose $r+\sqrt{2}$ is rational, where r is also a rational number. By definition, there exists two integers $m, n$ such that $r+\sqrt{2}=\frac{m}{n}$. Similarly, there exists two integers $t, k$ such that $r=\frac{t}{k}$ since $r$ itself is a rational number. Then,

$$
\begin{gathered}
\sqrt{2}=\frac{m}{n}-\frac{t}{k} \\
\sqrt{2}=\frac{k m-n t}{n k}
\end{gathered}
$$

Let $p=k m-n t$ and $q=n k . \sqrt{2}=\frac{p}{q}$, where $p$ and $q$ are two integers. It contradicts our assumption that $\sqrt{2}$ is not rational. Thus, $r+\sqrt{2} \notin \mathbb{Q}$.

8 We give a proof by contradiction. Assume $\log _{2}(5)$ is rational. By definition,there exists two integers $m, n$ such that $\log _{2}(5)=\frac{m}{n}$. Then,

$$
\begin{gathered}
2^{\log _{2}(5)}=2^{\frac{m}{n}} \\
5=2^{\frac{m}{n}} \\
5^{n}=2^{m}
\end{gathered}
$$

Apparently, $5^{n}$ is odd and $2^{m}$ is even. $5^{n}$ can never equal to $2^{m}$ for any two integers $m, n$. Thus, $\log _{2}(5)$ is not rational.

13 We give a proof by contradiction. Assume $r x$ is rational, where r is a rational number but $\neq 0$ and x is not rational. By definition, there exists two integers $m, n$ such that $r x=\frac{m}{n}$. Similarly, there exists two integers $t, k$ such that $r=\frac{t}{k}$, since $r$ itself is a rational number. And since $r \neq 0, t$ is not 0 . Then,

$$
\begin{gathered}
r x=\frac{t x}{k}=\frac{m}{n} \\
t x n=m k \\
x=\frac{m k}{t n}
\end{gathered}
$$

Let $p=m k$ and $q=t n . x=\frac{p}{q}$, where $p$ and $q$ are two integers. It contradicts our assumption that x is not a rational number. Thus, if $r$ is rational and $\neq 0$ and $x$ is irrational, then $r x$ is irrational.

4e $(A-C)=(A-B) \cup(B-C)$ is not true.
Assume $A=\{1,2\} \quad B=\{2,3\} C=\{1,3\}$
$(A-C)=\{2\}(B-C)=\{2\}(A-B)=\{1\}$
$(A-B) \cup(B-C)=\{1,2\} \neq(A-C)$
Salveage: $(A-C) \subseteq(A-B) \cup(B-C)$
Proof: Assume $x \in(A-C)$. Then, $x \in A$ and $x \notin C$. Either $x \in B$ or $x \notin B$. So, either $x \in B$ and $\notin C$, or $x \notin B$ and $x \in A$. So $x \in(B-C)$ or $x \in(A-B)$. So $x \in(A-B) \cup(B-C)$. Thus, $(A-C) \subseteq(A-B) \cup(B-C)$
8 (a) Assume $A \subseteq B$. So for all set $X$ that $X \subseteq A, X \subseteq B$. Since every element in $P(A)$ must be an subset of $A$, which means it must be an subset of $B$. And every subset of $B \in P(B)$. So every element in $P(A)$ is also an element in $P(B)$. Thus, $P(A) \subseteq P(B)$.
(b) By definition, for all element $X \in P(A \cap B), X \subseteq(A \cap B)$. So, $X \subseteq A$ and $X \subseteq B$. Since $X \subseteq A, X \in P(A)$. Similarly, since $X \subseteq B, X \in P(B)$. So $X \in(P(A) \cap P(B))$. Thus $P(A \cap$ $B) \subseteq(P(A) \cap P(B))$. Since all previous steps are reversible. $(P(A) \cap P(B)) \subseteq P(A \cap B)$. Thus $P(A \cap B)=P(A) \cap P(B)$.
(c) $P(A \cup B)=P(A) \cup P(B)$

By definition, for all element $X \in P(A \cup B), X \subseteq(A \cup B)$. So, $X \subseteq A$ or $X \subseteq B$. So $X \in P(A)$ or $X \in P(B)$. So $X \in(P(A) \cup P(B))$. Thus $P(A \cup B) \subseteq(P(A) \cup P(B))$. Since all previous steps are reversible. $(P(A) \cup P(B)) \subseteq P(A \cup B)$. Thus $P(A \cup B)=P(A) \cup P(B)$.

11 On the last page.
19 Proof by contrapositive: Assume $B \neq C$. There exists an element $x$ that ( $x$ in $B$ but not in $C$ ) or ( $x$ in $C$ but not in $B$ ). Because $B$ and $C$ are symmetrical in this statement (swatching $B$ and $C$ will give us same proposition). Just assume $x$ in $B$ but not in $C$. For an element $a \in A$, the ordered pair ( $a, x$ ) will be in $A \times B$ but not in $A \times C$, since $x \notin C$. So $A \times B \neq A \times C$. Thus, if $A \times B=A \times C, B=C$.

22a True.
Assume ordered pair $(p, q) \in A \times(B-C)$. So $p \in A$ and $q \in B$ and $q \notin C$. So $(p, q) \in A \times B$ and $(p, q) \notin A \times C$. So $(p, q) \in(A \times B-A \times C)$. Thus, $A \times(B-C) \subseteq A \times B-A \times C$. Since previous steps are all reversible, $A \times B-A \times C \subseteq A \times(B-C)$. So $A \times(B-C)=A \times B-A \times C$.

22b False.
Counterexample:
Assume $A=\{1\}$
$B=\{2\}$
$U=\{1,2\}$
$A \times B=\{(1,2)\}$
$U^{2}=\{(1,1),(1,2),(2,1),(2,2)\}$
$(A \times B)^{c}=\{(1,1),(2,1),(2,2)\}$
$A^{c} \times B^{c}=\{(2,1)\}$
Thus, $(A \times B)^{c} \neq A^{c} \times B^{c}$.
24 (a) $\{[0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10],[10,11]\}$
(b) $B_{1}=(0,2), B_{10}=(0.9,1.1), B_{100}=(0.99,1.01)$

