Definition of the Derivative

Joshua Garrett

The derivative is a useful definiton because it gives the tangent line to the given equation. The derivative is a basic term that is applied in most advanced mathematical concepts such as Abstract Algebra, Differential Equations, Electrodynamics, and other advance courses.

Definition 1 (The Formal Definition of Derivative) The derivative is defined as the computation of the slope of a tangent line, the instantaneous rate of change of a continuous function, and the instantaneous velocity of an object. The derivative of $f(x)$ with respect to x is the function f^{\prime} and is defined as,

$$
\begin{equation*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \tag{1}
\end{equation*}
$$

Definition 2 (The Informal Definition of Derivative) The derivative of a continuous function is the rate of change of a function at a given input. The derivative of a function can also be denoted as

$$
\begin{equation*}
\left(f^{n}(x)\right)^{\prime}=n \cdot f^{n-1}(x) \tag{2}
\end{equation*}
$$

Example 1 (Solution Attainable) Find the derivative of the function using the limit definition:

$$
\begin{equation*}
f(x)=x^{2}+7 \tag{3}
\end{equation*}
$$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\left((x+h)^{2}+7\right)-\left(x^{2}+7\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left.x^{2}+2 x h+h^{2}+7-x^{2}-7\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h \\
& =2 x
\end{aligned}
$$

Example 2 (Solution Unattainable) Find the derivative of the function using the limit definition:

$$
f(x)=\left\{\begin{array}{cc}
x^{2} & x>0 \tag{4}\\
-x^{3} & x<0
\end{array}\right.
$$

Solution: Since the function above is a piece wise function, there is a point at $x=0$ where the function has a hole. Since the function is discontinues, the derivative does not exist.

