The Finite Element Method by Example in Qt/C++

Krzysztof Napiontek
knapiontek@gmail.com

Version 1.0
May 20, 2014

Abstract

The aim of this article is help with understanding The Finite Element Method in mechanics. The
theoretical part is reduced to its minimum and most of the work is focused on diagrams, graphics and
examples. The relevant part of source code calculating tetrahedron truss is presented at the end of
each section along with its visualized output.

Contents
1 Introduction

2 The Concrete Example
2.1 Global Data Definition in the Example

3 The Finite Element Method

3.1 Tetrahedron Truss Breakdown e
3.2 The Stiffness Matrix of an Element in Local Coordinates
3.3 Coordinate Transformation e

3.3.1 Global and Local Coordinates Relations

3.3.2 The Point Displacement Relations

3.3.3 Global and Local Forces Relations
3.4 The Stiffness Matrix of an Element in Global Coordinates
3.5 Global Stiffness Matrix Aggregation L L o L.
3.6 Fixing a Point Displacement L o
3.7 Implementation

4 Solving Linear Equations by LU Decomposition Method
41 Explanation
42 SolvinganExample L
43 Pitfalls of Direct Methods
4.4 The Concrete Example Result Presentation
4.5 Implementation of LU Decomposition Method,

5 The 3D Data Presentation in the Documentation
51 PointRotation
52 An Example of Rotated Tetrahedron
5.3 Implementation of the Rotation Procedure

6 Summary

11
11
12
13
13
13

15
15
16
16

16

1 Introduction

There are many works presenting FEM, most of them very complex and comprehensive with purpose
of full explanation of all details of the method. A reader who needs explanation of general idea behind
finds it difficult to understand. This work tries to extract the most important aspects in a way helping
to understand all knowledge almost at the first read. The relevant source code added at the end of each
section calculates and visualizes the simplest 3D truss object - tetrahedron. The Hook’s Law is the only
equation borrowed from mechanics. There is also a need to understand trigonometry and basic matrix
operations before reading.

2 The Concrete Example

For the purpose of this article the complete concrete example was implemented. It includes data type
definitions, construction of a matrix equation, its solution and in final the presentation in graphics
format. A number of dumps of the equation data have been generated for better understanding
parts of implementation. The source code presented in this work was tested with Qt 5.1 in Windows
environment. It does not use any platform specific code and can be easily ported to other systems.

The final result of the example is presented on the figure 1. It contains an original geometry of the
truss, also geometry deformation by an external force and reactions in fixed points. Detailed explanation
will be given in following chapters.

original geometry
,T//> ————— geometry deformation
p1) A ——— applied external force

| S @ reactions in fixed points

Figure 1: The Graphics Generated by the Example

2.1 Global Data Definition in the Example

struct Point3D

{
double x, y, z;

}’

// indices of first and second end of an element
struct Element

{

int pl, p2;

};

const int point_no = 4;

const int element_no 6;

// geometry nodes

const Point3D point_list[point_no] = {
{-1.0,-1.60,-1.0 }, // O

{-1.0, 1.0,-1.0 }, // 1
{1.5,-1.0,-1.0 }, // 2
{-1.0,-1.0, 2.0 } // 3
};
// geometry, refers to point_list or/and output_list
const Element element_list[element_no] = {
{06, 1%, //0
1, 23}, // 1
{2,013}, //2
{3,001, //3
{3, 1% // 4
{3,2%y //5
};

// fixed point displacement list, boolean values
Point3D fix_list[point_no] = {

{1, 0, 1%, // 0
{1,906, 1%}, // 1
{0, 0,013}, //2
{1, 1, 1%}y //3

};

// forces attached to coresponding points
Point3D force_list[point_no] = {
{0.0, 0.0, 0.0 3}, // 0

{ 0.0, 0.0, 0.0 }, // 1
{ 0.0,20.0,20.0 }, // 2
{ 0.0, 0.0, 0.0 } // 3

// displaced points
Point3D output_list[point_no] = {

{ 0.0, 0.0, 0.0 }, // 0
{0.0, 0.0, 0.0 }, // 1
{0.0, 0.0, 0.0 }, // 2
{ 0.0, 0.0, 0.0 } // 3

};
3 The Finite Element Method

The FEM analyse in this chapter finds relation between forces and displacements in global coordinates.
At first it breaks down the truss into separate elements, finds relation of them in local coordinates using
the Hook’s Law and in next step it transforms it to global coordinate system for each element. Finally it
aggregates all elements in one global matrix of stiffness. The lower case bold font is reserved for local
and the upper case bold font for global matrices and vectors.

3.1 Tetrahedron Truss Breakdown

The first step of analyses requires the truss breakdown. Each element will be analysed separately and
finally all of them will be aggregated in global matrix. Separation of elements is shown on the figure 2.

€1

Op— ®
e —® P2
€5

Figure 2: Truss Breakdown

3.2 The Stiffness Matrix of an Element in Local Coordinates

Relation between axial forces fy, fi and axial displacements Apg, Ap; in local coordinates in respect of
the Hook’s Law as depicted on the figure 3 is described by equations 1 and 2 . Despite of 3D analyses
most of the figures use 2D coordinates for simplicity.

EA
fo= T(APO - Ap1) (1)
EA
fi= T(Apl — Apo) ()
a) Displacements b) Forces
Yy Y
L/ //
(%0, ¥o)
fyo
x x

Figure 3: Displacements (a) and Stress Forces (b) in an Element

In fact the method provides only approximated solution since it assumes that angles between el-
ements stay the same after applying external forces. In reality such approach is accepted as long as
deformations are small.

Using matrix notation we isolate local stiffness matrix k.

[ﬁ] - % [—11 _11] [ﬁ,’iﬁ’] ®)
k= % [—11 _11] @)

The stiffness matrix represents geometry in an algebraic form. Final form of matrix equation in local
coordinates shown below. Lower case bold letters reserved for local coordinates.

f = kAp (5)

3.3 Coordinate Transformation

In previous chapter we described relations in local coordinates. In order to aggregate all elements into
global system a number of transformations have to take place.

3.3.1 Global and Local Coordinates Relations

The figure 3a can be used in order to describe local and global geometrical relations.

L= \/(xl —x0)2 + (Y1 = Y0)? + (21 — 20)? (6)
Cy = COSX = %)
¢ = cosy = L0 ®)
C; =COSZ = %)

3.3.2 The Point Displacement Relations

The displacement from the figure 3a for the point py is broken down on the figure 4.

y

(x0, o)

Figure 4: Displacement of the Point py in Details

From congruence of triangles as on the figure 4 we obtain

Apy = Axp cos x + Ayg cos iy + Azy cos z (10)
Apy = Ax; cosx + Ayy cosy + Az cosz (11)
In other words
AXO
Ayo
Apo| _|ex ¢y ¢ 0 0 O0]|Az (12)
Api| [0 0 0 o ¢ c||Ax
Ayl
AZl
or simpler
Ap = TAP (13)

The equation 13 describes displacement relation between local and global coordinates.

3.3.3 Global and Local Forces Relations

Forces given directly from geometry on the figure 3b

fro =Cxfo
fyo = eyfo
fzo = szo
fu =ch
fn =cyh
le = sz1

or in a matrix form

a
NT o=

fy1

?0 Cx 8
Yo ¢
?:H oA
le

o O O
[}
=

F=T"f

The equation 21 describes forces relation between local and global coordinates.

3.4 The Stiffness Matrix of an Element in Global Coordinates

(14)
(15)
(16)
(17)
(18)
(19)

(20)

(21)

Equations obtained in previous chapter: Hook’s law, displacement and force relations between local

and global coordinates are repeated below.

f=kAp

Ap = TAP
F=T'f

It can be transformed into

f=kAp

f = KTAP

T'f = T'KTAP
F = T'KTAP

Finally the extracted version of global stiffness matrix K in global coordinates takes form

2 2

c2 CeCy GGz —CR —CxCy —CyC:
cxy cﬁ Cyz —Cxly —cf, —CyC:
K = TTKT = EA cxciz cyCs c? —cécZ —cyc; —C?
L |- -cey —cicz 2 CxCy CxCz
—CxCy —cﬁ —CyCz CxCy cﬁ cyc:
—CxC: =Gz —CF oG CyC: c?

so the main equation of this work is formed as

F = KAP

and describes relation of global forces and deformation of whole truss geometry.

(22)
(23)
(24)

(25)
(26)
(27)
(28)

(29)

(30)

3.5 Global Stiffness Matrix Aggregation

Let’s form equation 30 for an element e;(py, p2) in Global Stiffness Matrix. The element index for cosines
is omitted for simplicity (c, instead of ¢;, etc.).

[2 CeCy GGz .. . =2 —xCy —CiCz . . J|[Ax] [fi]
CxCy cf, Cylz ... —CxCy —ci —cyc: . . -||Ayo fro
O CyC: &L —ae —oe -2 .. L||Az Fao
EA
T 2 2 = (31)
L |-t —ccy —Ccz . . . s CxCy Gz . . .||Ax2 fra
—CxCy —ci —CyC; . .. GxCy ci ez . . ||Ay2 foe
—CC; —CyC; —C2 L L ol oy . || Az f
By substituting parts of above equation by
E N cxczry CxCy Ax; fri]
ky = cxcy ¢ ozl Api=|Ayi|l fi=|fu (32)
ez cyc: C2 Az; fai)
we obtain simpler form ready for further analysis
kz . —kz . Apo fo
e . 33
—k2 . k2 . APQ f2 ()
K2AP = F, (34)

The sum of all directional forces based on the condition of equilibrium in a point is equal zero

Zszo ZFY:O ZFZ=O (35)

Figure 5: Force Equilibrium in the Point py (reactions and stresses)

and displacement in the point is the same for all elements based on it. So we can write down

Z K.AP = Z F. e-index of an element (36)

Finally the simplified form of K for all elements (aggregation with collocation)

k(] + + k3 —ko Apo f()
_kO ko + k1 + ky —k1 —/\4 ‘ IApl _ f1 (37)

—k] k] + +k —k5 Apz - f2

—k3 —ky —k5 k3 + ey + k5 Ap;; f3

The aggregated version of equation 31 is omitted here due to a poor readability.

The numerical version of the stiffness matrix with no forces applied as generated by the concrete

example
[400 .
500 .
333.3
=500
—400
—-333.3

. —400
—-500
-1524 . -190.5
7072 =128 1524
-128 192
152.4 . 695.4
-121.9 . -152.4
-125.9
. -104.9
-85.34 128

128 192 1259

3.6 Fixing a Point Displacement

1524

-121.9 . . —85.34
. . 128
-1524 -1259 -104.9
121.9 . .
1511 1259
1259 1049
85.34

-151.1 -1259 -128

Determinant of matrix K constructed in previous chapter is equal zero.

det(K) = 0

-333.3
128
=192
125.9

-151.1
-125.9
-128

6765 ||.]

(38)

(39)

It means there is no unique solution and the truss is statically unstable. Applying external force does
not cause any reaction. In order to stabilise it some coordinates in some points of geometry have to be
locked. It can be understood as fixing the truss to the wall. The procedure is as follows:

P1

eFixed Point Displacement

%]

p2

Figure 6: Fixing Tetrahedron to the Wall

Consider linear equations with exactly one solution

or

a1xo + b1x1 + C1Xp = dl

arXxXp + ble + CrXp = dz

asxo + b3x1 + C3Xp = d3

Ll3b

ai l’)l C1||Xo dl
am by of|x|=|d
3 c3]|x2 dz

(40)
(41)
(42)

(43)

Fixing a point displacement requires setting selected variable to zero (no point displacement in this
direction). Let’s choose x; = 0. In order to preserve equality the constant d, must be freed. Disregarding
zeros and moving new variable to the left side we obtain:

a1xg + c1x = dy

asXy + C2Xy — dr,=0

(44)
(45)

asxg + C3xp = d3

ai 0 C1||Xo d1
an -1 (8)) dz =10
as 0 C3|[X2 d3

Concluding - in order to fix some degrees of freedom the corresponding column of the stiffness
matrix has to be zeroed and a fixed variable replaced with -1. Corresponding cell in solution vector will

hold freed constant.
-1 . S . . —400
500 . . =500
-1
. . -1 -1524 -190.5 1524
-500 . . 7072 . 1524 -121.9
-128 -1 . . .
152.4 . 6954 -1524 -1259
-121.9 -1524 1219 .
-125.9 . 151.1
. -104.9 . 1259 -1
—85.34 . .
128 . 125.9 -151.1

3.7 Implementation

const int dof_no = 3 * point_no; // degrees of freedom
double K[dof_no][dof_no] = { { 0.0 } }; // stiffness matrix
double F[dof_no] = { 0.0 }; // force vector

void populate_equation()
{
// init F, K
for(int i = 0; i < point_no; i++)

{
const Point3D& fix = fix_list[i];
Point3D& force = force_list[i];
int px = 3 * i + 0;
int py = 3 * i + 1;
int pz = 3 * i + 2;
// reactions in K (in place of fixed displacement)
if(fix.x) K[px][px] = -1;
else F[px] = force.x;
if(fix.y) Klpyllpyl = -1;
else F[py] = force.y;
if(fix.z) K[pz]l[pz] = -1;
else F[pz] = force.z;
}

// compose K - stiffness matrix

for(int i = 0; i < element_no; i++)

{
const double EA = 1000; // Young * Area
const Element& element = element_list[i];

const
const
const
const

Point3D&
Point3D&
Point3D&
Point3D&

int plx = 3 *

pointl
point2
fixl =
fix2 =

element.

= point_list[element.pl];
= point_list[element.p2];
fix_list[element.pl];
fix_list[element.p2];

pl + O;

20
20

(48)

int ply = 3 * element.pl + 1;
int plz = 3 * element.pl + 2;
int p2x = 3 * element.p2 + 0;
int p2y = 3 * element.p2 + 1;
int p2z = 3 * element.p2 + 2;
double dx = point2.x - pointl.x;
double dy = point2.y - pointl.y;

double dz = point2.z - pointl.z;

double 1 = ::sqrt(dx * dx + dy * dy + dz * dz);
double cx = dx / 1;

double cy = dy / 1;

double cz = dz / 1;
double cxxEAl *

= cxXx * cx * EA / 1;
double cyyEAl = cy * cy * EA / 1;
double czzEAl = cz * cz * EA / 1;
double cxyEAl = cx * cy * EA / 1;
double cxzEAl = cx * cz * EA / 1;
double cyzEAl = cy * cz * EA / 1;
if(!fixl.x)
{

Klplx][plx] += cxxEAl;
K[lply]l[plx] += cxyEAl;
K[plz][plx] += cxzEAl;

K[p2x][plx] -= cxxEAl;
K[p2yl[plx] -= cxyEAl;
K[p2z][plx] -= cxzEAl;

3

if(!lfixl.y)

{

Klplx][ply]l += cxyEAl;
Klplyl[ply]l += cyyEAl;
Klplz]l[ply]l += cyzEAl;

K[p2x][ply] -= cxyEAl;
K[p2yl[ply]l -= cyyEAl;
K[p2z][ply]l -= cyzEAl;

}

if(!fixl.z)

{

K[plx][plz] += cxzEAl;
K[lply]l[plz] += cyzEAl;
K[plz][plz] += czzEAl;

K[p2x][plz] -= cxzEAl;
K[p2yl[plz]l -= cyzEAl;
K[p2z][plz] -= czzEAl;

}

if(!fix2.x)

{
K[plx][p2x] -= cxxEAl;
K[plyl[p2x] -= cxyEAl;
K[plz]l[p2x] -= cxzEAl;

K[p2x][p2x] += cxxEAl;
K[p2yl[p2x] += cxyEAl;
K[p2z][p2x] += cxzEAl;

}

if('fix2.y)

{
K[plx][p2y] -= cxyEAl;
K[plyl[p2y] -= cyyEAl;
Klplz]l[p2y] -= cyzEAl;

K[p2x][p2y] += cxyEAl;
Klp2y]l[p2y] += cyyEAl;
K[p2z][p2y] += cyzEAl;

10

}

if(!fix2.2)

{
Klplx][p2z] -= cxzEAl;
Klply]l[p2z] -= cyzEAl;
K[plz]l[p2z] -= czzEAl;

K[p2x][p2z] += cxzEAl;
K[p2y]l[p2z] += cyzEAl;
K[p2z][p2z] += czzEAl;
}
}
}

4 Solving Linear Equations by LU Decomposition Method

4.1 Explanation

The method takes advantage of the fact that solving equation where matrix is triangular is straightfor-
ward. All cells above (or below) diagonal are equal zero and solution can be achieved in one iteration.
The method at first breaks down the matrix into a multiplication of 2 triangular ones and then calculates
sub-equations as follows.

Consider linear equations with exactly one solution

a1xo + b1x1 + C1Xp = dl (49)
arxp + ble + CrXp = dz (50)
asXxo + b3x1 + C3Xp = d3 (51)
or

1 cilf[xo] [d
a x| = d2 (52)
as C3 || X2 d3

KAP = F (53)

LU Decomposition Method is one of the simplest, though memory hungry solver. Let’s decompose
matrix A into 2 triangular matrices LU (lower and upper).

ap 0 0 M11 Uy U1z
ap Mzz M23 (54)
as

The equation can be rewritten as

LUAP =F (55)

When L and U are calculated the auxiliary vector Z can be simply solved

LZ=F (56)

Finally the vector AP can be solved in similar way

UAP=7Z (57)

11

4.2 Solving an Example

Let’s solve a simple example.

1 2 3][xo 10
4 14 19||x1| =159
5 58 80][x2 211

M11 Up U3
4 14 19 121 1 Upp U3
5 58 80 131 3 0 Uszz

LU Decomposition

(58)

(59)

It can be noticed that general direction of solving cells of matrices L and U is as depicted on figure 7.

1=1%up = = up=1
2:1*1/[12 = = Up=2
3=1*M13 = = u13=3
4 = Iun = 4=Iy=+1 = =4
5 = Inun = 5=I3=x1 = =5
4= lz1M12+U22 = 14=4+2+uy» = Up==~6
9=lz11/l13+1/l23 = 19=4+*3+uy = Upy=7
58 = Iz1u12 + I3puin = 58=5%2+I3%6 = =8
80 = Is1u13 + lping + g3 = 80=5%3+8+7+uzpz = up =9

Figure 7: Direction of the Decomposition in Matrices L and U
Verification of LU Decomposition
1 2 3 1 0 O]t 2 3
4 14 19|=|4 1 0Of|0 6 7
5 58 80 5 8 1|0 0 9

Solving the auxiliary Z vector

1 0 0]]zo 10

4 1 O0ffz1|=1]59

5 8 1f|z 211
1+z9=10 = = z,=10
4dszyg+1%z1 =59 = 4+10+2z; =59 = z1=19

S5xz0+8%z1 +1%2, =211 = 5+10+8%19+1%2,=211 = 2z =9

R
FE R

12

Verification

The final solution

(60)

(61)

(62)

(63)

(64)

(65)

9%x, =9 = = x=1
6+x1+7%x,=19 = 6xx+7+1=19 = x=2 (66)
Txxg+2%x1+3*x, =10 = 1*xx3+2*2+3*1=10 = x7=3
Verification
1 2 3][3 10
0 6 7(|2[=]19 (67)
0 0 9|[1 9
Final verification of the original equation
1 2 3][3 10
4 14 19([2|=1]59 (68)
5 58 80|[1 211

4.3 Pitfalls of Direct Methods

The present example uses LU Decomposition for solving matrix equations. The main downside of
such approach is that data blocks are composed mostly with zeros. It is very inefficient management
of memory and can be used only for simple geometries. Bigger examples may not fit into memory of
modern computers. More realistic model should be solved by one of sparse matrix methods. The most
promising of them is Conjugate Gradient Method. Further work on next version of this document will
be focused on it.

4.4 The Concrete Example Result Presentation

The below matrix equation presents the stiffness matrix, the displacement vector and external forces
applied in selected points. Some cells where —1 is shown are used for fixed displacements and were
chosen to compute reaction forces in corresponding displacement vector. The simplicity dictates such
approach for price of loosing symmetry of matrix.

The data in the form

KAP =F (69)
is generated below as a result of computation of the main example
-1 . S . . —400 1[—41.67]
500 . -500 0.2344
-1
. -1 -1524 -190.5 1524 25
-500 707.2 1524 -121.9 0.2344
-128 -1 . . . -30 70
152.4 6954 —152.4 -1259 0.1042 .)
-121.9 -1524 1219 . 0.5286 20
-125.9 151.1 0.2191 20
. -104.9 1259 -1 . 16.67
—85.34 . . -1 -20
128 125.9 -151.1 -1]1 10

4.5 Implementation of LU Decomposition Method

double dP[dof_no] = { 0.0 }; // K * dP = F, delta P - solution vector
// solving K * dP = F by LU method
void calculate_equation()
{
double L[dof_no][dof_no] = { { 0.0 } }; // lower matrix

13

double U[dof_no][dof_no] = { { 0.0 } }; // upper matrix

double Z[dof_no] = { 0.0 }; // auxiliary vector

// init L := 1
for(int i = 0; i < dof_no; i++)
{
L[i][i] = 1.0;
}

// find L, U where L * U = K
for(int i1 0; il < dof_no; il++)

{
double acc = 0.0;
for(int i2 = 0; i2 < dof_no; i2++)
acc += L[i1][i2] * U[i2][i1];
U[i1][i1] = K[i1][il] - acc;
for(int i2 = il + 1; i2 < dof_no; i2++)
{
acc = 0.0;
for(int i3 = 0; i3 < il; 1i3++)
acc += L[i1][4i3] * U[i3][i2];
U[i1][i2] = K[i1][i2] - acc;
acc = 0.0;
for(int i3 = 0; i3 < il; 1i3++)
acc += L[i2][i3] * U[i3][i1l];
L[i2][i1] = (K[i2][il1] - acc) / U[i1]1[i1];
}
}

// finally find result
for(int il = 0; il < dof_no; 1il++)
{
// find Z where L * Z = F
double acc = 0.0;
for(int i2 = 0; i2 < il; 1i2++)
acc += L[il1][i2] * Z[i2];
Z[il] = F[il1] - acc;
}
for(int il = dof_no - 1; il >= 0; il--)
{
// find dP where U * dP = Z
double acc = 0.0;
for(int i2 = il; i2 < dof_no; i2++)
acc += U[i1][i2] * dP[i2];
dP[il] = (Z[il1l] - acc) / U[il][il];
}

// copy to global output

for(int i = 0; i < point_no; i++)

{
const Point3D& point = point_list[i];
const Point3D& fix = fix_list[i];
Point3D& force = force_list[i];
Point3D& output = output_list[i];

int px = 3 * i + 0;
int py = 3 * 1 + 1;
int pz = 3 * 1 + 2;
output = point;

if(fix.x) force.x = dP[px];

14

else output.x += dP[px];

if(fix.y) force.y = dP[py];
else output.y += dP[py];

if(fix.z) force.z = dP[pz];
else output.z += dP[pz];
}
}

5 The 3D Data Presentation in the Documentation
This chapter tries to explain how to present three-dimensional data in the document. Using only x, y and
removing z coordinate is not a good solution since we loose part of the information and presented figures

are not clear. Rotation is much better as all of original coordinates can be used and after transformation
the new coordinate z’ can be discarded without loosing general understanding.

5.1 Point Rotation

Let’s consider rotation of a point in coordinates x, y

¥
iiiiiiiii ,“ (xll yl)
71
7 |
LA
II !
|
II !
|
r, |
R (X0, Yo)
7/ | |
7 | |
, T | |
,/ i 1
’ | |
’ I I
L\ | 1
X
Figure 8: Point Rotation
From geometry on the figure 8 we can obtain
Xo = 1 COS (71)
Yo = rsinay (72)
X1 = rcos(ag + a1) = ¥ COS ap COS ap — ¥ Sin g Sin o (73)
Y1 = rsin(ap + a1) = rsinag cos ag + r cos ap sina (74)
hence
X1 = XpCOS a1 — Yo sinay (75)
Y1 = Xosinay + yp cos ay (76)

Changes on the axis z can be expressed simply by z; = z;. Constructing three-dimensional matrix
we obtain rotation operator around the axis z

X1 cosa; —sina; 0][x
yi|=|sinay cosa; Of|yo (77)
Z1 0 0 1|z

P, = R,P, (78)

15

5.2 An Example of Rotated Tetrahedron

The example rotates all points of geometry around the axis y and then x. It can be expressed as
P; = RWR, Py (79)
In details

X1 1 0 Offce, 0 sy

yl = O Cx Sy O 1 0 (80)
Z1 0 —=sx ofl-sy 0 ¢
x1 Cy 0 sy][xo
yi|=|-58y ¢ S:Cyf|yo (81)
Z1 —CxSy —Sx CxCyl|Z0

Finally the coordinate z; is cut off as it does not have representation in 2D. Visualized results are
presented on the figure 9.

p1 a) Original P b) Rotated y
y
L x
z= O X z
Po
Po,p3 p2 p P,
Ps

Figure 9: Original and Rotated Tetrahedron Example

5.3 Implementation of the Rotation Procedure

-.1; // rotation angle around axis X
-.1; // rotation angle around axis Z

const double rot_x
const double rot_z

const double c_x = ::cos(rot_x);
const double s_x = ::sin(rot_x);
const double c_y = ::cos(rot_z);
const double s_y = ::sin(rot_z);

// transform/rotate point from 3D => 2D
QPointF rotate(const Point3D& p)

{
return QPointF
(
cC_y * p.Xx + s_.y * p.z,
- S_X * s_y * p.X + C_X * p.y + S_X * c_y * p.z
);
}

6 Summary
Finally the article described all practical aspects of the finite method presentation. Starting with ge-

ometry definition, theoretical method explanation, solving matrix equations and 3D data presentation.
Reader could confront mathematical aspects with practical implementation for better understanding.

16

