Involutory Property of the Discrete Hartley Transform

Frank the Giant Bunny

April II, 2016

Given a column vector $x \in \mathbb{R}^{n}$, its Discrete Hartley Transform (DHT) is defined as another vector $y \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
y_{j}=\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} x_{i} \operatorname{cas}\left(\frac{2 \pi}{n} i j\right) \quad \text { for } \quad j \in\{0, \cdots, n-1\} \tag{I}
\end{equation*}
$$

where the cas function is defined as $\operatorname{cas} \vartheta=\cos \vartheta+\sin \vartheta$. Interestingly, the DHT is an involution; that is, the DHT is the same as the inverse DHT.

$$
\begin{equation*}
x_{i}=\frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} y_{j} \operatorname{cas}\left(\frac{2 \pi}{n} i j\right) \quad \text { for } \quad i \in\{0, \cdots, n-1\} \tag{2}
\end{equation*}
$$

This paper proves the DHT is indeed an involution.
Target Equality To simplify (I) and (2), define an $n \times n$ symmetric matrix H whose (i, j)-entry is $\frac{1}{\sqrt{n}} \operatorname{cas}\left(\frac{2 \pi}{n} i j\right)$. Then the DHT and the inverse DHT are

$$
y=H x \quad \text { and } \quad x=H y
$$

where $x=\left[x_{0}, \cdots, x_{n-1}\right]^{\top}$ and $y=\left[y_{0}, \cdots, y_{n-1}\right]^{\top}$. Then proving the involutory property of the DHT reduces to showing that $H^{2}=I$ where I is an $n \times n$ identity matrix. This further reduces to showing that the rows in H are orthogonal; that is,

$$
\left\langle h_{i}, h_{i^{\prime}}\right\rangle= \begin{cases}1, & \text { if } i=i^{\prime} ; \\ 0, & \text { otherwise } ;\end{cases}
$$

where $h_{i}=\frac{1}{\sqrt{n}}\left[\operatorname{cas}\left(\frac{2 \pi}{n} i 0\right), \cdots, \operatorname{cas}\left(\frac{2 \pi}{n} i(n-1)\right)\right]^{\top}$ is the $i^{\text {th }}$ row in H. It may be written in terms of cas functions as

$$
\sum_{j=0}^{n-1} \operatorname{cas}\left(\frac{2 \pi}{n} i j\right) \operatorname{cas}\left(\frac{2 \pi}{n} i^{\prime} j\right)= \begin{cases}n, & \text { if } i=i^{\prime} \tag{3}\\ 0, & \text { otherwise }\end{cases}
$$

which is the target equality for the involutory property.

CAS Identity The proof of (3) begins with an identity about cas functions.

$$
\begin{equation*}
\operatorname{cas} \alpha \operatorname{cas} \beta=\sin (\alpha+\beta)+\cos (\alpha-\beta) \tag{4}
\end{equation*}
$$

Proof of (4). A cas(•) can be simplified to $\cos (\cdot)$ as follows:

$$
\begin{equation*}
\operatorname{cas} \vartheta=\cos \vartheta+\sin \vartheta=\sqrt{2}\left(\frac{1}{\sqrt{2}} \cos \vartheta+\frac{1}{\sqrt{2}} \sin \vartheta\right)=\sqrt{2} \cos \left(\vartheta-\frac{\pi}{4}\right) \tag{*}
\end{equation*}
$$

Then

$$
\begin{aligned}
\operatorname{cas} \alpha \operatorname{cas} \beta & =\sqrt{2} \cos \left(\alpha-\frac{\pi}{4}\right) \cdot \sqrt{2} \cos \left(\beta-\frac{\pi}{4}\right) \\
& =\cos \left(\alpha+\beta-\frac{\pi}{2}\right)+\cos (\alpha-\beta) \\
& =\sin (\alpha+\beta)+\cos (\alpha-\beta)
\end{aligned} \quad 2 \cos \vartheta \cos \phi=\cos (\vartheta+\phi)+\cos (\vartheta-\phi)
$$

which completes the proof.
Target Simplified The target equality (3) is decomposed into two summations by (4).

$$
\sum_{j=0}^{n-1} \operatorname{cas}\left(\frac{2 \pi}{n} i j\right) \operatorname{cas}\left(\frac{2 \pi}{n} i^{\prime} j\right)=\sum_{j=0}^{n-1} \sin \left(\frac{2 \pi}{n}\left(i+i^{\prime}\right) j\right)+\sum_{j=0}^{n-1} \cos \left(\frac{2 \pi}{n}\left(i-i^{\prime}\right) j\right)
$$

The above will be interpreted as the real and imaginary parts in geometric progressions of complex numbers:

$$
\begin{equation*}
\sum_{j=0}^{n-1} \operatorname{cas}\left(\frac{2 \pi}{n} i j\right) \operatorname{cas}\left(\frac{2 \pi}{n} i^{\prime} j\right)=\mathfrak{J}\left\{\sum_{j=0}^{n-1} \omega^{\left(i+i^{\prime}\right) j}\right\}+\mathfrak{R}\left\{\sum_{j=0}^{n-1} \omega^{\left(i-i^{\prime}\right) j}\right\} \tag{s}
\end{equation*}
$$

where ω is the primitive $n^{\text {th }}$ root of unity $\omega=\exp (\imath 2 \pi / n)=\cos (2 \pi / n)+\imath \sin (2 \pi / n)$. The identity (s) is easily proved by the De Moivre's identity.
Summation Lemma The last puzzle to the involutory property proof is the summation of a geometric series:

$$
\text { For an integer } k, \quad \sum_{j=0}^{n-1}\left(\omega^{k}\right)^{j}= \begin{cases}n, & \text { if } k \text { is a multiple of } n ; \\ 0, & \text { otherwise. }\end{cases}
$$

This lemma ensures that the imaginary part of $\sum_{j=0}^{n-1}\left(\omega^{k}\right)^{j}$ is zero regardless of the integer value k. On the other hand, the real part is n if k is a multiple of n and zero otherwise. Plugging in theses values to the RHS of (5) yields the desired identity (3), which completes the involutory property proof.

