1.

Proposition. Prove that if $A: V \rightarrow W$ is an isomorphism and $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{n}$ is a basis for V, then $A \boldsymbol{v}_{1}, A \boldsymbol{v}_{2}, A \boldsymbol{v}_{3}, \ldots, A \boldsymbol{v}_{n}$ is a basis in W

Proof. Proving by contradiction.
Assuming that the basis of W is contains some addition vector $A v_{n+1}$, we know that, by performing the reverse of the isomorphism, we will get v_{n+1}, a vector unreachable through the basis of V, thus, since it is not in V 's basis, is not in V.
Therefore, W 's basis contains no extra vectors.
Assuming that the basis of W is smaller than V 's, such that some $A v_{i}$ is reachable through the other vectors in W 's basis.
Performing the inverse isomorphism, we result in v_{i}, which is in v 's basis.
This is a contradiction, so we know that W 's basis is not smaller than V 's.
Given that we assumed the two to be isomorphic, and their basis' are of the same size, we know that their basis' are isomorphic, so $A \mathbf{v}_{1}, A \mathbf{v}_{2}, A \mathbf{v}_{3}, \ldots, A \mathbf{v}_{n}$ forms W 's basis.
2.

Proposition. Find all right inverses to the 1×2 matrix $A=(1,1)$. Show that there is no left inverse.

Proof. We know that the matrix we are looking for results the following:

$$
A * A_{r}^{-1}=1
$$

Given that we know that $A=(1,1)$, we know that A_{r}^{-1} looks like $\left[\begin{array}{l}x \\ y\end{array}\right]$
Thus:

$$
\left[\begin{array}{ll}
1 & 1
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]=[x * 1+y * 1]=[1]
$$

Therefore, we know that $x+y=1$. In efforts to eliminate variables, we recognize that $y=1-x$, so $A_{r}^{-1}=\left[\begin{array}{c}x \\ 1-x\end{array}\right]$
Assuming there to be some A_{L}^{-1} such that $A_{L}^{-1} \times A=1$, we know that A_{L}^{-1} is no taller than 1 and no wider than 1 , so that we may multiply the two.
Thus, $A_{L}^{-1}=[x]$.
However, $[x] \times\left[\begin{array}{ll}1 & 1\end{array}\right]=\left[\begin{array}{ll}x & x\end{array}\right] \neq[1]$
3.

Proposition. Find all left inverses of $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{T}$
Proof. Letting $A=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
We know that $A_{L}^{-1} \times A=1$, which means that A_{L}^{-1} looks like $\left[\begin{array}{lll}x & y & z\end{array}\right]$
That means: $A_{L}^{-1} \times A=\left[\begin{array}{lll}x & y & z\end{array}\right] \times\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=[x * 1+2 * y+3 * z]=1$
Which means that $x+2 y+3 z=1$, so $x=1-2 y-3 z$. thus $A_{L}^{-1}=\left[\begin{array}{lll}1-2 y-3 z & y & z\end{array}\right]$
Proving this:

$$
\begin{gathered}
{[1-2 y-3 z \quad y \quad z] \times\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=[1 *(1-2 y-3 z)+(2 * y)+(3 * z)]=} \\
{[1-2 y-3 z+2 y+3 z]=[1]}
\end{gathered}
$$

4.

Proposition. Is the column $(1,2.3)^{T}$ invertible?
Proof. Letting $A_{R}^{-1}=[x]$, the only properly sized matrix which can be multiplied with A in that order.
This results $A \times A_{R}^{-1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \times[x]=\left[\begin{array}{c}x \\ 2 x \\ 3 x\end{array}\right] \neq[1]$
6.

Proposition. Suppose the product $A B$ is invertible. Show that A is right invertible and B is left invertible.

Proof.
7.

Proposition. Prove that i
Proof.
13.

Proposition. Prove that i
Proof.
1.

Proposition. Prove that i
Proof.
3.

Proposition. Prove that i
Proof.

$$
\subset, \subseteq, \supset, \supseteq, \cup, \cap, \in, \notin
$$

