
SECURED SOFTWARE SYSTEMS

Biodoumoye George Bokolo

July 30, 2019

(Affiliations)1 INDEPENDENT STUDY:CSIS 6033
(Affiliations)2 Instructed and Guided by Dr. Luis Cueva Parra

(Affiliations)3 Department of Mathematics and Computer Science:
Cyber-Systems and Information Security Graduate Program

(Affiliations)4 Auburn University at Montgomery, Alabama, USA.
(Affiliations)5 Study Material Credit: Carnegie Mellon University

(https://www.ece.cmu.edu/ ece732/s18/)

ABSTRACT

The is a research based on a an independent study class in summer 2018 with
Dr. Cueva Parra. The research, codes and papers was based on writing and
improving on already written codes from Dhaval Kapil, Jmanico and Andrew
Smith’s codes and my own research and modification of those codes to suit
the target of this research. There are 2 sections to this paper and research.
The first section deals with different types of Secured software systems and
programs in C language explaining the different vulnerabilities and attacks. The
second session is strictly researched based papers. This paper is mainly based
on understanding, explaining and making an explicit explanation for anyone
else to read and understand the concepts of Buffer overflow attacks, Integer
overflow attack and format strings. The other half of the paper is a researched
based paper on scholarly reviewed journals, papers, essays, research and my own
findings and conclusions on Memory Protections, Virtual Machines, Control
Flow integrity, Runtime Enforcements and a little bit of Digital Forensics.

SECTION I

1. INTRODUCTION

Buffer Overflow attack, Integer Overflow attack and Format String attacks
has been a huge programmer error since programming languages but it was
not noticed by attackers because languages are new and there were little or no
attackers. All that was needed in the past was to do wonderful calculations that

man can not do with programming, and many other human impossibilities and
hackers got certified to be ethical hackers but then everything that has a good
aspect somehow creates a bad aspect while doing good -hence programming.

The vulnerabilities in programming languages are its worst enemies and
hence overflow attacks. When a buffer, memory size, data type, or sting use is
overflown or unsafe to use and still being used, then the use of the code defeats
it’s purpose of creating a buffer or using those strings in the first place. This
vulnerabilities are mostly common in C and C++ codes, hence our concentra-
tion.

This paper goes into details explain the different vulnerabilities of this pro-
grams using C codes and how they can be explioted, what harm they could do
and how it generally works against the programmer which in most cases is a
legitimate company.

Some independent study on Runtime Enforcement, Virtual Machines, CFI
and Digital Forensics are written in the second section of this paper.

2. BUFFER OVERFLOW

Buffer overflow is the most common form of insecurity and vulnerability
in IT, networking, Internet and many more software systems. Buffer overflow
is when a program or a process writes more data into a fixed size block of
memory than the designated memory can hold. Buffers are blocks of memory
with restricted size content of data and when more data is written in a location
and it is more than the needed size, then there is a buffer overflow and this
happens very often.

Buffer overflow is a temporary data space area that has a limited spaces
allocated to a single task. During buffer overflow, the alloted buffer memory
can contain what ever is related to the task, but an overflow occurs when more
inputs of data keeps coming in and the buffer cannot not reject it, so it keeps
taking more and more data and thereby overwriting the data already stored that
is critical to the task in that buffer. Input could be direct interaction, receiving
a data file, remote request, or general data processing.

2.1 BUFFER OVERFLOW ATTACKS

Buffer overflow can provide incorrect instructions and results, jeopardize
security bridges or Now there are vulnerabilities that are accompanied with
buffer overflow and that will be discussed in the future.

Since buffer overflow are the most common and popular vulnerabilities, they
are most remote penetration attacks that any organization should be concerned
about because they are easy to exploit and they give the attacker the ability to
inject and execute attack codes easily.

Buffer overflow attacks is when the flows in error handling and input checks
are exploited during the process of passing more data to the buffer than it

can handle eg bad networking, bad input handling, allows for unpredictable
situations like the attack.

There are two ways to gain control of the host by using an attack code, they
include:

• Inject it: A string of code is inputed to a program that stores in a buffer.
This strings are actually CPU instructions and the attack code is stored
in the buffer. In this case, the buffer does not need to be over flowed to
do this, it can be injected at the right size of the buffer. It does not also
matter where the buffer is located weather on the stack, heap or static
data area, the attack can be effective.

• It is already in there: Most of the time, the code the attacker needs is
already written by the victim in the programs address space. The attacker
just need to parameterize the code and make the program to jump to that
location. This jump can be done by using activation records, function
pointers, or long jump buffers.

2.2 SOLUTIONS TO BUFFER OVERFLOW ATTACKS AND
VULNERABILITIES

The aim of the attacker is to subvert the function of a code or program to take
control of the host and control the program.

There are four basic approaches to defending buffer overflow attacks and
vulnerabilities:

• Brute force methods

• Operating system approach: This helps to make the storage areas of
buffers non-executable and prevents hackers from injecting codes for at-
tack.

• Direct Compiler approach: this does array bounds checks on all array
accesses and overflow buffer attacks are completely impossible but it very
expensive to maintain.

• Indirect Compiler approach: This is an integrity check on code pointers
before dereferencing is done can definitely stop buffer overflow attack.

Mostly buffer overflow attacks can be stopped by doing the above and the
following:

• Stopping data when buffer is filled up. Boundary protections

• Constant monitoring during updates and upgrades

• Using some programming languages that are not vulnerable to buffer over-
flow attacks eg C, C++, etc.

2.3 EXAMPLE 1 OF A TYPICAL BUFFER OF ATTACK

#include <stdio.h>

void Hack()
{

printf("Opps! You have been Hacked!!!!\n");
}

int main()
{
char buffer[30];

printf("Enter some text:\n");
scanf("%s", buffer);
printf("You entered: %s\n", buffer);

return 0;
}

Buffer Overflow as explained by Dhaval Kapil on this website https://dhavalkapil.com/
blogs/Buffer-Overflow-Exploit/ was the main source of information to explain
and execute this Buffer Overflow attack.

The code below explains a simple steps to identify vulnerability, attack the
vulnerability and basic buffer over flow attack. The vulnerability in this code is
the return address and so we will modify it and execute it as well.

In the code, there is a Hack method, that prints a simple message to boost
your ego about the attack. In that method, an actual attack can be initialized,
you can install a program, you can shut the system down, you can pop-up the
terminal or cmd to instantiate a new function, start or halt a process. You get
the point, you can do any thing in that method. The vulnerability in the code
can also cause the program to crash or corrupt and this can easily be done in
stack/heaps where a memory space is dedicated to a particular input at a given
time.

The main method executes the code: checks the buffer size which was as-
signed, The input is supposed to be random character (or whatever you choose)
within the buffer size, first, to test the code and ensure that it works. Then,
you can try breaking the code and overflowing the memory of the buffer.

It is very important to use the -fno-stack-protector when running the code
to avoid the stack smashing error. This is not applied to all systems. MAC,
Linux Ubuntu and Linux Mint works differently in this case. Using Mint, it is
safer to used that command to ensure that the code compiles correctly and if

you dont use that, you can not tell when the code is having a smash error and
when it is a segmentation fault or buffer overflow.

Figure 1: Execution Error -Stack Smashing Detection

To compile, run and execute the code above follow the steps on the screenshot.

Note: The name of the c code is BufferOverflow.c and the output file is buff.

Figure 2: Compiling, Running and Executing the Code

To get the assembly language code from your terminal " objdump -d ./filename

Figure 3: Assembly Language explanation of the code: OBJDUMP

These are very important to note:

• The address of Hack Function is 004005ed in hex

• Since our machine is little endian (Little-endian format reverses this order:
the sequence addresses/sends/stores the least significant byte first (lowest
address) and the most significant byte last (highest address)), we need to
reverse the order of the types. You need to find out if your machine is
little-endian or big endian. In this case it is going to be "ed 05 40 00".
The location of the dump from the disassembly always happen to be the
same all the time.

• To execute the code in python, type in this command on your terminal
window

python -c ’print "a"*32 + "\xed\x05\x40\x00"’ | .\baby

Now the final screen shot explains the result of the entire process. In that
screen shot the buffer has been overflown and the address return address has
been modified. The hack function was not called, which is easily rectifiable
but the 32 characters of "a" was printed and a " set of unknown characters
at the end" which exceeds the buffer size and gives room to execute any other
command.

I tried running this code in a MAC terminal and the results are different,
the hack method object dump register worked but in case your computer is just
like mine, you can run the code without the HACK method.

Figure 4: Final Results

Figure 5: Remove Hack Method-Final Results

Segmentation Error occurs when a program is attempting to access a
memory location that is not allocated or allowed because it is either below or
in this case above the buffer size. You can also see that the memory was access
and the error occurred after the memory location has already been access.

In this case, i reduced the buffer size to 5 and removed the hack method and
when I ran the code I was able to print 5 character and even more. Note: size
of buffer is 5 bytes and not 5 characters, so the number of characters allowed is
2 to the power of 5 which is 32 and this applies to all the memory size cases in
the entirely of this paper.

When I tried typing in 10 characters and even 31 characters it took it in
without grumbling but when I type in 33 characters and above, it brought up
the segmentation error.

2.4 EXAMPLE 2 OF A TYPICAL BUFFER OF ATTACK

This is a simpler and much easier example of buffer overflow attacks.

#include <stdio.h>

#include <string.h>

void Hack (void)
{

char buf[5]; //Buffer size is 5 and the number of characters expected is 2^5 = 32
gets(buf); // warning: the ‘gets’ function is dangerous and should not be used.
printf("%s\n", buf); //prints the password and buff size

}

int main(void)
{

printf("Enter the password\n");
Hack(); //calls the hack method
printf("Great, That is within the Buffer size\n");

return 0;
}

You are expected to enter a password to a nonexistent account lol. Type in
a few characters within the buffer size which in this case is 5.

2.5 RESULTS: COMPILE AND RUN

biodoumoye@biodoumoye-HP-650-Notebook-PC ~/Desktop/Independent Study SUmmer 2018/Project Final $ gcc -fno-stack-protector BuffOverFlow.c
BuffOverFlow.c: In function ‘Hack’:
BuffOverFlow.c:7:11: warning: ‘gets’ is deprecated (declared at /usr/include/stdio.h:638) [-Wdeprecated-declarations]

gets(buf); // warning: the ‘gets’ function is dangerous and should not be used.
^

/tmp/ccA4xaQj.o: In function ‘Hack’:
BuffOverFlow.c:(.text+0x10): warning: the ‘gets’ function is dangerous and should not be used.
biodoumoye@biodoumoye-HP-650-Notebook-PC ~/Desktop/Independent Study SUmmer 2018/Project Final $./a.out
Enter the password
HackHackHackHack
HackHackHackHack
Great, That is within the Buffer size
biodoumoye@biodoumoye-HP-650-Notebook-PC ~/Desktop/Independent Study SUmmer 2018/Project Final $./a.out
Enter the password
HacKHackHackHackHackHackHackHackHackHackHackHackHackHack

You can see how the code compiles, runs and gets executed.

In the above picture, the highlighted is the location of the return address.
Here, a small junk of memory has been overwritten by a call to retq by using
the eip

To avoid Buffer overflow, the following function use should be avoided and
replaced with the example listed

Figure 6: Buffer Overflow attack Example 2-Final Results

Figure 7: Assembly Language Dump Example 2-Final Results

\item gets() -> fgets() - read characters
\item strcpy() -> strncpy() - copy content of the buffer
\item strcat() -> strncat() - buffer concatenation
\item sprintf() -> snprintf()

Note:
There are 3 reasons why the Hack method did not work and to ensure that

yours works, you have to do the following:

Figure 8: Buffer address on Assembly language Example 2-Final Results

Figure 9: Buffer Overflow attack (Assembly Language return address modifica-
tion) Example 2-Final Results

• Find out if your system is a little endian or big endian system and this
will let you know if you have to reverse the order of the return address

• you can compile your code using the "-no-pie" flag to ensure that the wrong
characters are omitted and then you can get the right return address and
bypass errors

• Be sure of the system processor you are using to run and compile your code,
sometimes the buffer memory allocated might be more or less compared
to the bit system and in my system, that was part of the issue.

• Take note of the gcc version you are using, in some case you might need
to downgrade or upgrade to a different version. I had 4.8 version and

I upgraded to 6.0 version and I still had the same problem but when I
downgraded to the 5.4 version, my code ran successfully and printed a
space for extra characters -hence the buffer overflown

Figure 10: Buffer address on Assembly language Example 2-Final Results

3. BASIC INTEGER OVERFLOW

Integer overflow bugs are also vulnerabilities that can be used to exploit a
code to strike an attack, a crash a program or gain absolute access and control
to the program or its function for easy manipulation.

This overflow attacks are usually done in C or C++ codes compiled binary,
hence it us very important to take cognizance during code writing and compi-
lation. practice makes you perfect in avoiding vulnerabilities.

Integer overflow is similar to buffer overflow in many ways except buffer
over deals with memory allocation and integer overflow deals with data type(
numeric) overflow.

Integers are whole numbers and does not include fractions. There is an
overflow when an input can output fractions

In the code below, I will be using Process registers - this is a designated
amount of storage space and allocation of data to that space on the processor.
For instance, if the binary width of a register is 8bits, then the maximum size
of data that can be stored is 2 to the power of 8 -1 = 255 and so on.

#include <stdio.h>

#include <string.h>
#include <stdlib.h>

int main (int argc, char **argv)
{
int val, i;
char *memory;

if (argc < 2)
exit(1);

val = atoi(argv[1]); // converts strings to integer

if (val > 0){
memory = malloc(val * sizeof(char *)); // Possible Overflows here
//checks if input value before memory allocation is greater than 0
//malloc(0) allocates memory with 0 that allows for overwriting segments of heap

if (memory == NULL)
{
printf(" Failure \n");
exit(2);
}
}
for (i =0; i<val; i++)
{
memory[i] = ’A’; // Prints A as many times as the user requests(5) hereby assigning memory size to be 5 * the size of the character *
printf("%c", memory[i]);
}
printf("\n");

return 0;
}

Now with the above knowledge, the explanation of integer overflow should
be a little bit more explicit. If we have 2 8bit unsigned integer values x and
y. For x, the max is 8bits, 255, which is 0xFF in hex, and y is a 0x1, when
x and y is added together, the result will be 0x100. In this case, there is an
integer overflow because allocated binary register can only store 8bits which is
255 maximum value of data but it is overflown because it now has 256 values
calculated. 0x100 is too large and hence, an integer overflow.

In C, the size of a computational result is truncated to a size that fits the
process register width, meaning the maximum representation value is adjustable
in the sense that the values wraps up during an overflow to result in a smaller
value or a negative number.

The code is used to print this statement " A" as many times as the user

signifies.

Figure 11: Prints A 5 times

In the above picture, the buffer memory now has a size of 5 and since in C,
the computation of integer values are never over overflown because the buffer
size us always added to one and the Unit_maximum This means that

5(val) * sizeof(char*) which always result to zero. the buffer memory is now 5 * sizeof(char*).

which always result to zero. the buffer memory is now 5 * sizeof(char*).

This code uses malloc(0) to assign the memory size to zero after checking if
it is zero and then the memory can be overwritten.

The result of the arithmetic has a huge chance of overflowing.

Try this computation to proof overflow:
sizeof(char *) = 4
INT_MAX = 4294967295
INT_MAX + 1 = 4294967296
4294967296 / 4 = 1073741824
when 1073741824 is inputted, malloc(0) method is called and even if the

value is greater than 0.
Now compile and run the code again using the input that most definitely

will overflow-
You notice the val>0 check is omitted and malloc(0) did allocate memory to

the segment on the heap and then the overwriting was done and A was printed
1073741824 times which should ordinarily not be accommodated in the memory
space allocated. That is the overflow.

3.1 INTEGER OVERFLOW ATTACK EXAMPLE 2

Figure 12: Prints A 1073741824 times

#include <stdio.h>

int main(int argc, char *argv[]){
char buffersize[8];
int i = atoi (argv[1]);
memcpy(buffersize, argv[2]);
printf("The number of characters and in bytes = %d = %d\n" ,i, i*sizeof(int));
printf("The buffer is %s\n", buffersize);
}

Figure 13: Compile and Run: Negative Value

Figure 14: Try a larger Number

This is a much more simple and explicit code. The code defines the buffer
and assigns a certain size to it and in this case 8, and defines an integer i that
takes it’s value as an argument, converting string input to integer. Then does a
memory copy the buffer from the second argument into the buffer it’s size which
has already been declared and now the argument is returned with its size which
is multiplied by 4 byte.

Now after running the program, you can see the result from the screen shot.
We then tried a negative value and that resulted to a memory segmentation
fault and that is because there is an overflow. This also happens in the second
screen shot when we tried a higher value that is way higher than the buffer size,
it also gave an error.

4. EXPLOITING FORMAT STRINGS VULNERABILITY

When the input string data can be evaluated as a command, then a Format
String attack has occurred. A format string is an ASCII string that contains
text and format parameters. This parameters are mostly used by functions in a
class of a program and mostly in C language. Some of the format strings shows
locations, provides formatted input or output and so on.

printf is the most popular and widely used format string in c and it gives you a lot of leverage as to how the output will look or should be formatted or printed out. When printing you want to make the output look nicer, more understandable, well indented and readable, then this strings comes in like next line string "\n", \t for tab,getting a location on a drive on a path, then you will understand the need for those format strings.

When a function has a number of arguments that must be parsed to it, an
attacker can use that as a vulnerability to deceive the program and pass more
than the needed arguments because sometimes there are no limits to the number
of arguments that can be parsed.

#include<stdio.h>
int main(int argc, char** argv) {

char buffer[10];
strncpy(buffer, argv[1], 5);
printf(buffer);
return 0;

}

Using the above C code for instance, there is one argument for the print
format string but then an attacker can parse in more than one string and deceive
the printf function into believing that it needed 5 arguments and then print
function will not reject the request, it will print all 5 arguments on the stack.

If you are careful you can tell that the compiler grumbled when compiling
and that should tell you that the software is not secured or safe and has some
sort of vulnerability that can be exploited.

Figure 15: Buffer Overflow attack (Assembly Language return address modifi-
cation) Example 2-Format String- Printf formatted

Any string can be formatted and that can cause a program or an application
to behave a way that it was not designed to behave and that because an at-
tacker has gained access to the code by formatting a string that was a oversight
vulnerability on the part of the programmer.

List of strings that can easily be formatted includes the following but not
limited to:

1. printf

2. writef

3. gets

4. scanf

5. fprint

6. vsnprintf

7. sprintf

SECTION II

RESEARCH PAPERS: Memory Protections, Virtual Machines,
Android Isolation and Confinement, Control Flow integrity,

Runtime Enforcements and Digital Forensics

5. CONTROL-FLOW INTEGRITY, PRINCIPLES,
IMPLEMENTATIONS AND APPLICATIONS

Computers as effective and efficient as they are and have made our lives and
jobs easy, they are also subject to attacks. This attacks are usually to gain
unauthorized accessed to confidential documents and locations, alter those in-
formation and make them inaccessible and unavailable for users or owners. The
attack can come in a software application attack or via hardware attacks e.g.
break ins. Most of the time, we invite this attacks by creating vulnerabilities
that we know of or don’t know about e.g. Buffer Overflow as discussed above,
keeping certain data unsafe carelessly. are often subject to external attacks that
aim to control software behavior.

The most dreaded part of computer sceince and computer security is the
combination of this attacks and the challenges they bring. The enforcement
of Control-Flow Integrity (CFI), that aims to meet these standards for trust-
worthiness. The paper introduces CFI enforcement, presents CFI and security.
The CFI security policy dictates that software execution must follow a path of
a Control-Flow Graph (CFG) determined ahead of time. The CFG in question
can be defined by analysis; source code analysis, binary analysis, or execution
profiling. For our experiments, we focus on CFGs that are derived by a static
binary analysis. CFGs can also be defined by explicit security policies, for ex-
ample written as security automata.

A security policy is of limited value without an attack model. CFI enforce-
ment provides protection even against powerful adversaries that have full control
over the entire data memory of the executing program. CFI enforcement is ef-
fective against a wide range of common attacks, since abnormal control-flow
modification is an essential step in many exploits; independently of whether
buffer overflows and other vulnerabilities are being exploited.

5.1 CONTROL-FLOW INTEGRITY

Control Flow Integrity is a policy that restricts the execution flow of a pro-
gram at runtime to a predetermined CFG by validating indirect control-flow
transfers. On the machine level, indirect control-flow transfers may target any
executable address of mapped memory, but in the source language (C, C++, or
Objective-C) the targets are restricted to valid language constructs such as func-
tions, methods and switch statement cases. Since the aforementioned languages
rely on manual memory management, it is left to the programmer to ensure that
non-control data accesses do not interfere with accesses to control data such that
programs execute legitimate control flows. Absent any security policy, an at-
tacker can therefore exploit memory corruption to redirect the control-flow to
an arbitrary memory location, which is called control-flow hijacking.

CFI closes the gap between machine and source code semantics by restrict-

ing the allowed control-flow transfers to a smaller set of target locations. This
smaller set is determined per indirect control-flow location. Most CFI mecha-
nisms determine the set of valid targets for each indirect control-flow transfer
by computing the CFG of the program.

Note that languages providing complete memory and type safety generally
do not need to be protected by CFI. However, many of these “safe” languages
rely on virtual machines and libraries written in C or C++ that will benefit
from CFI protection. The security guarantees of a CFI mechanism depend on
the precision of the CFG it constructs. The CFG cannot be perfectly precise
for non-trivial programs. Because the CFG is statically determined, there is
always some over-approximation due to imprecision of the static analysis. An
equivalence class is the set of valid targets for a given indirect control-flow
transfer.

5.2 CLASSIFICATION OF CONTROL-FLOW TRANSFERS

Control-flow transfers can broadly be separated into two categories:

1. forward and

2. backward. Forward control-flow transfers are those that move control to a
new location inside a program. when a program returns control to a prior
location, we call this a backward control-flow.

A CPU’s instruction-set architecture (ISA) usually offers two forward control-
flow transfer instructions: call and jump. Both of these are either direct or
indirect, resulting in four different types of forward control-flow:

Direct jump: is a jump to a constant, statically determined target address.
Most local control-flow, such as loops or if-then-else cascaded statements, uses
direct jumps to manage control.

Direct call: is a call to a constant, statically determined target address.
Static function calls, for example, use direct call instructions.

Indirect jump: is a jump to a computed, i.e., dynamically determined
target address. Examples for indirect jumps are switch-case statements using a
dispatch table, Procedure Linkage Tables (PLT), as well as the threaded code in-
terpreter dispatch optimization [Bell 1973; Debaere and van Campenhout 1990;
Kogge 1982].

Indirect call: is a call to a computed, i.e., dynamically determined target
address. The following three examples are relevant in practice:

Function pointers are often used to emulate object-oriented method dispatch
in classical record data structures or for passing callbacks to other functions.
V-table dispatch is the preferred way to implement dynamic dispatch to C++
methods. A C++ object keeps a pointer to its v-table, a table containing
pointers to all virtual methods of its dynamic type. A method call, therefore,
requires

1. dereferencing the v-table pointer,

2. computing table index using the method offset determined by the object’s
static type, and

3. an indirect call instruction to the table entry referenced in the previous
step. In the presence of multiple inheritance, or multiple dispatch, dy-
namic dispatch is slightly more complicated.

5.3 CFI AND SECURITY

Constraining control flow for security purposes is not new. For example,
computer hardware has long been able to prevent execution of data memory,
and the latest x86 processors support this feature. At the software level, several
existing mitigation techniques constrain control flow in some way, for example
by checking stack integrity and validating functions returns by encrypting func-
tion pointers or even by interpreting software using the techniques of dynamic
machine-code translation. The distinguishing features of CFI are its simplic-
ity, its trustworthiness and amenability to formal analysis, its strong guarantees
even in the presence of a powerful adversary with full control over data memory,
and its deploying ability, efficiency, and scalability.

Like many language-based security techniques, but unlike certain systems
for intrusion detection, CFI enforcement cannot be subverted or circumvented
even though it applies to the inner workings of user-level programs.

The use of high-level programming languages has, for a long time, implied
that only certain control flow javascript would be expected during software
execution. Even so, at the machine-code level, relatively little effort has been
spent on guaranteeing that control actually flows as expected. The absence of
runtime control-flow guarantees has a pervasive impact on all software analysis,
processing, and optimization—and it enables many of today’s exploits.

CFI instrumentation aims to change this situation by embedding within
software executables both a control-flow policy to be enforced at runtime and
the mechanism for that enforcement. Indeed, CFI can align low-level behavior
with high-level intent, as specified in a CFG. In this respect, CFI is reminiscent
of the use of typed low-level languages, such as TAL [Morrisett et al. 1999], and
of efforts to bridge the gaps between high-level languages and actual behavior
(e.g., [Abadi 1998; Kennedy 2005]).

CFI is simple, verifiable, and amenable to formal analysis, yielding strong
guarantees even in the presence of a powerful adversary. Moreover, in-lined CFI
enforcement is practical on modern processors, is compatible with most existing
software, and has little performance overhead. Finally, CFI provides a useful
foundation for the efficient enforcement of security policies.

6. RUNTIME ENFORCEMENT

Runtime Enforcement is newly developed and important technique that is
used mostly in the medical industry to ensure that a running system adheres
to the given properties and policies according to a set standard. Enforcement
monitors are used to input executions to output results that adheres to certain
properties set.

So many research tools, devices and apparatus has failed especially medical
devices such as chips and pacemakers. They have failed due to lack of adherence
to certain embedded software instructions All those times of failure, there were
so many changes there were made as regards certifications, designs, architectures
and product models but then the failure of mandated instructions were not
considered to be the result for the actual failure of the device.

Runtime enforcement is powerful technique to ensure that a running system
respect some desired properties using an enforcement monitor and input execu-
tion(in the form of a sequence of events) is modified into an output sequence
that complies to a property. An alternative to such passive runtime analysis is
runtime enforcement.

Runtime enforcement is a technique aiming at ensuring that a (possibly
incorrect) observation input to the (so-called) monitor is transformed and output
as a correct observation.

The research from the Runtime Enforcement of Cyber-Physical Systems done
in July 2017 has come up with a framework that will make this devices adhere
or not adhere to the instructions and specifications given and they are:

• They developed a bi-directional enforcement where the pacemaker is not
only the concentration but also the heart and this can formalize the run-
time enforcement problem of the cyber physical system

• Discrete Times automata was used to express the needed policies

• After all this procedures, they were able to ensure timing safety of the
device

So many other researches were carried out by different research groups to
ensure the safety of human used devices before it can be used on a human.

7. MEMORY AND ADDRESS PROTECTION

The most obvious problem of multiprogramming is preventing one program
from affecting the data and programs in the memory space of other users. For-
tunately, protection can be built into the hardware mechanisms that control
efficient use of memory, so solid protection can be provided at essentially no
additional cost

The most obvious problem of multiprogramming is preventing one program
from affecting the data and programs in the memory space of other users. For-
tunately, protection can be built into the hardware mechanisms that control
efficient use of memory, so solid protection can be provided at essentially no
additional cost.

7.1 FENCE

The simplest form of memory protection was introduced in single-user op-
erating systems to prevent a faulty user program from destroying part of the
resident portion of the operating system. As its name implies, a fence is a
method to confine users to one side of a boundary.

7.2 RELOCATION

If the operating system can be assumed to be of a fixed size, programmers
can write their code assuming that the program begins at a constant address.
This feature of the operating system makes it easy to determine the address
of any object in the program. However, it also makes it essentially impossible
to change the starting address if, for example, a new version of the operating
system is larger or smaller than the old. If the size of the operating system
is allowed to change, then programs must be written in a way that does not
depend on placement at a specific location in memory.

Relocation is the process of taking a program written as if it began at address
0 and changing all addresses to reflect the actual address at which the program
is located in memory. In many instances, this effort merely entails adding a
constant relocation factor to each address of the program. That is, the relocation
factor is the starting address of the memory assigned for the program.

Conveniently, the fence register can be used in this situation to provide
an important extra benefit: The fence register can be a hardware relocation
device. The contents of the fence register are added to each program address.
This action both relocates the address and guarantees that no one can access
a location lower than the fence address. (Addresses are treated as unsigned
integers, so adding the value in the fence register to any number is guaranteed
to produce a result at or above the fence address.) Special instructions can be
added for the few times when a program legitimately intends to access a location
of the operating system.

7.2 BASE/BOUNDS REGISTER

A major advantage of an operating system with fence registers is the ability
to relocate; this characteristic is especially important in a multiuser environ-
ment. With two or more users, none can know in advance where a program will
be loaded for execution. The relocation register solves the problem by providing
a base or starting address. All addresses inside a program are offsets from that
base address. A variable fence register is generally known as a base register.

Fence registers provide a lower bound (a starting address) but not an upper
one. An upper bound can be useful in knowing how much space is allotted and
in checking for overflows into "forbidden" areas. To overcome this difficulty,
a second register is often added, as shown in Figure 4-3. The second register,
called a bounds register, is an upper address limit, in the same way that a base
or fence register is a lower address limit. Each program address is forced to be
above the base address because the contents of the base register are added to
the address; each address is also checked to ensure that it is below the bounds
address. In this way, a program’s addresses are neatly confined to the space
between the base and the bounds registers.

7.3 SEGMENTATION

We present two more approaches to protection, each of which can be imple-
mented on top of a conventional machine structure, suggesting a better chance
of acceptance. Although these approaches are ancient by computing standards
that they were designed between 1965 and 1975they have been implemented on
many machines since then. Furthermore, they offer important advantages in
addressing, with memory protection being a delightful bonus.

The first of these two approaches, segmentation, involves the simple notion
of dividing a program into separate pieces. Each piece has a logical unity,
exhibiting a relationship among all of its code or data values. For example, a
segment may be the code of a single procedure, the data of an array, or the
collection of all local data values used by a particular module. Segmentation
was developed as a feasible means to produce the effect of the equivalent of
an unbounded number of base/bounds registers. In other words, segmentation
allows a program to be divided into many pieces having different access rights.

Segmentation offers these security benefits:

1. Each address reference is checked for protection.

2. Many different classes of data items can be assigned different levels of
protection.

3. Two or more users can share access to a segment, with potentially different
access rights.

4. A user cannot generate an address or access to an unauthorized segment
Paging

One alternative to segmentation is paging. The program is divided into equal-
sized pieces called pages, and memory is divided into equal-sized units called
page frames. (For implementation reasons, the page size is usually chosen to
be a power of two between 512 and 4096 bytes.) As with segmentation, each
address in a paging scheme is a two-part object, this time consisting of <page,
offset>.

8. DIGITAL FORENSICS RESEARCH - THE NEXT 10 YEARS

Digital forensics is a branch of forensic science; it includes the recovery and
investigation of materials found in digital devices, often in relation to computer
crime. The term digital forensics was originally used as a synonym for computer
forensics but has extended to cover investigation of all devices capable of storing
digital data. The focus is on digital forensic research which includes aspects of
digital forensics, limitations and problems related to digital forensics.

Digital forensics investigations have a variety of applications. The most
common is to support or refute a hypothesis before criminal or civil courts. The
private sector may also have the need for Forensics during internal corporate
investigations or intrusion

The technical aspect of an investigation is divided into several sub-branches,
relating to the type of digital devices involved; computer forensics, network
forensics, forensic data analysis and mobile device forensics. The distinctive
forensic procedure includes the seizure, forensic imaging and analysis of digital
media and the production of a report into collected evidence.

8.1 DIGITAL FORENSICS

Digital forensics is defined as the use of scientifically derived and proven methods
toward the preservation, collection, validation, identification, analysis, interpre-
tation, documentation and presentation of digital evidence derived from digital
sources for the purpose of facilitation or furthering the reconstruction of events
found to be criminal, or helping to anticipate unauthorized actions shown to be
disruptive to planned operations.The main focus of digital forensics investiga-
tions is to recover objective evidence of a criminal activity (termed actus reus
in legal parlance).

8.2 ASPECTS OF DIGITAL FORENSICS

1. Attribution: In this aspect of digital forensics,Meta data and other logs
can be used to attribute actions to an individual. For example, personal
documents on a computer drive might identify its owner.

2. Alibis and statements : Information provided by those involved can be
cross checked with digital evidence.

3. Intent: As well as finding objective evidence of a crime being committed,
investigations can also be used to prove the intent (known by the legal
term mens rea). For example, the Internet history of convicted killer Neil
Entwistle included references to a site discussing How to kill people.

4. Evaluation of source: File artifacts and meta-data can be used to iden-
tify the origin of a particular piece of data; for example, older versions
of Microsoft Word embedded a Global Unique Identifier into files which
identified the computer it had been created on. Proving whether a file was
produced on the digital device being examined or obtained from elsewhere
(e.g., the Internet) can be very important.

5. Document Authentication: Related to "Evaluation of source," meta
data associated with digital documents can be easily modified (for ex-
ample, by changing the computer clock you can affect the creation date
of a file). Document authentication relates to detecting and identifying
falsification of such details.

8.3 LIMITATIONS OF DIGITAL FORENSIC RESEARCH

A major limitation to a forensic investigation is the use of encryption; this
interrupts initial examination where important evidence might be situated us-
ing keywords. Laws to induce individuals to reveal encryption keys are still
relatively new and controversial.

The argument that digital forensic processes are hyper-formalized centers on
the actuality that the evidentry principles recognized cannot be achieved under
certain circumstances. Consider the evidentry principles of integrity and com-
pleteness. The digital forensic community has worked hard to get the judiciary
to understand that the right way to respond and collect digital evidence does
not alter the evidence in any way and obtains all the evidence.

The problem is that the changing technological landscape often demands a
different approach – one where evidence will be altered (albeit minimally and
in a deterministic manner) and where not all the evidence can be seized.

Modern digital crime scenes often involve multi-terabyte data stores, mission
critical systems that cannot be taken off line for imaging, ubiquitous sources of
volatile data, and enterprise-level and/or complex incidents in which the scope
and location of digital evidence are difficult to ascertain. Many organizational
standards and guidelines are unsuccessful to address response and data acquisi-
tion in such circumstances; they often fail to facilitate proper decision-making
in the aspect of unexpected digital circumstances; and they often present evi-
dentiary principles as “rules,” allowing improvisation possibilities.

Digital forensic research has experienced many successes during the past
decade. There is a wide recognition of the importance of digital evidence ,
and the digital forensic research community has made great steps in ensuring
that science is emphasized in digital forensic science.Excellent work has been
accomplished with respect to identifying, excavating and examining archaeolog-
ical artifacts in the digital realm, particularly for ordinary computing platforms.

However, strong efforts should be directed towards four key research themes and
several individual research topics.

The four key themes are:

1. volume and scalability challenges,

2. intelligent analytical approaches,

3. digital forensics in and of non-standard computing environments,

4. forensic tool development.

In addition to these larger themes, pressing research topics include stenog-
raphy detection and analysis, database forensics, live files system acquisi-
tion and analysis,memory analysis, and solid state storage acquisition and
analysis.

With roots in the personal computing revolution of the late 1970s and early
1980s, the discipline evolved in a haphazard manner during the 1990s, and
it was not until the early 21st century that national policies emerged.Digital
forensics is defined as the use of scientifically derived and proven methods toward
the preservation, collection, validation, identification, analysis, interpretation,
documentation and presentation of digital evidence derived from digital sources
for the purpose of facilitation or furthering the reconstruction of events found to
be criminal, or helping to anticipate unauthorized actions shown to be disruptive
to planned operations. The focus is on digital

8.4 DIGITAL FORENSIC RESEARCH – THE FUTURE OF
JUSTICE

Digital forensics investigations have a variety of applications. The most
common is to support or refute a hypothesis before criminal or civil courts. In
the next 10 years, I see digital forensics being the ultimate strategy of finding
evidence against criminals. Lets look at it this way, the world is now a glob-
alized village, there is literally nothing you can do without social media, cloud
computing or storage, emails, and let says a worst case scenario, you don’t use
computers , you definitely use cell phones and even if they are burner phones,
they can be traced, deleted numbers can be found and finger prints can be
verified.

As long as everyone embraces the technology growth, they can be in danger
or set free or an accomplice even when they don’t know it. You can commit a
crime or solve a crime with the little gadgets you only use for you-tube videos
for kids or just phone calls for grandma.

In the past and presently, there are digital forensic tools used to find out
evidence of child pornography cases, credit card and social security theft, and
so much more. Encase is a tool that assist a lot of digital forensic analyst to

analyses a crime using a thumb drive, hard disk or what ever digital evidence
provided even with "presumed deleted or wiped out memory", Encase is your
guy. You need to be certified to use Encase and so are many other tools.

Forensic analyst today are expert witnesses in court and they have done a
great job by putting a lot of criminals in jail and brining justice to victims in
different ways. So I see digital forensics as the future of crime fighting, cyber
crime and cyber death.

9. VIRTUAL MACHINES

A virtual machine is an emulation of an Operating system based on a par-
ticular OS and Computer architecture which is inversely a physical computer.
Virtual Machines they are operated like basic computers but the interface is
different. They are operated by a combination of softwares and hardwares de-
pending on the situation.

Virtual machines are installed on an already installed Operating system and
then additional operating systems can be added as a machine to the VM.

This means that you can operate your host computer where the VM is
installed and you can as well operate the VM concurrently. SO not override
or restriction is placed on your home computer. They do not require additional
hardware from the one already installed prior to the installation, it order words,
it is not a machine of its own, it is a machine inside another machine.

VMs are substitutes for real machines, they are an additional interface for
virtualization purposes now what is virtualization?

Virtualization is the use of excess machine capacity to create a logical, arti-
ficial environment that offers features, functions and capabilities beyond those
offered by the underlying physical computing environment alone 9 . The goals
for virtualization is for easy computer access and usage and security.

In the old, regular PCs served the purpose of computerized needs but right
now the need for visualization has increased and the need has encompassed all
the different aspects of computing. Virtualization is needed to communicate
with people and systems, interact with different operating systems, interaction
with server, networks and desktops, management of computer security and so
many more.

9.1 VIRTUAL MACHINES AND ITS BENEFITS

The following types of processing virtualization is has been the most benefit of
VM:

1. Parallel processing monitors: allows for easy execution of the same appli-
cation by a number of computers

2. Workload management monitors: Allows for multiple instances of a single
process or application to run in many computers at the same time

3. High availability/fail over/disaster recovery monitors: Allows for protec-
tion of the user during any kind of failure.

4. Memory virtualization or distributed cache memory : Allows for many
devices and computers to share their internal memory to as many others
as possible

Virtual machines has also improved the use of systems, technology, recon-
figuration of hardwares and softwares, networking and allows for monitoring,
scaling, potability and other uses.

This paper seeks to introduce virtual machines and highlight its uses, ap-
proaches and security challenges. There are many types of visualization tech-
niques that can be employed on many levels from simple sandbox to full fledged
streamlined managed access.

For system virtual machines, there are two major development approaches,
full system visualization and para visualization. Because virtual machines can
provide desirable features like software flexibility, better protection and defi-
nitely does not depend on a particular hardware, they are used in so many
different research areas and have great potentials for great results.

These virtual machines provide users and administrators with great flexibil-
ity, allowing for the copying, saving, reading and modifying, sharing, migrating,
and great easiness in manipulating files. Virtual machines were first developed
by IBM in the 1960’s and were very popular in the 1970’s [1]. At that time,
computer systems were large and expensive, so IBM invented the concept of
virtual machines as a way of timesharing for mainframes, partitioning machine
resources among different users.

A virtual machine is defined as a fully protected and isolated replica of the
underlying physical machine’s hardware.

Virtual machines enhances resource sharing where the operating systems and
programs running in the host OS appears to be running on their own physical
computer. They may share the physical hardware of the machine, which may
include processor(s), memory, disks, and networking hardware, which can be
allocated during installation on configuration.

Another very important aspect of Virtual Machine isdata isolation. Data
isolation benefit is one of the key issues that distinguishes virtual computing or
Virtual Machine’s uniqueness from physical computing . However, it is always
beneficial to run certain activities on isolated systems. It is mainly due to the
fact that if one application is infected with virus or malware attack, it might
affect other parallel applications running in the virtual machines.

An earlier view on virtual machines was summarized by Robert Goldberg
on virtual machine research of the 60’s and 70’s and he also summarized the

principles to implement a virtual machine. As he said, the major purpose of
virtual machines was to solve software transportability, debug OSes, and run
test and diagnostic programs.

Since the architecture of the third generation computers cannot be virtual-
ized directly, it has to be done by software maneuver, which is very difficult.
Some researchers then proposed an approach to address this problem virtual-
izable architectures’ which directly support virtual machines, including Gold-
berg’s Hardware Virtualizer.

9.2 VIRTUALIZATION

1. Full virtualization It is a technique that target hardware is emulated in full
by directly executing some instructions with the same hardware as the host
and some through the Virtual machine monitor.This type of virtualization
allows running unmodified guest operating systems on top of the existing
native(host) operating system .

The advantage of this technique is that the guest operating (that runs
on VMM) or the applications that are executed on the guest OS needs
modification.

The main demerit of Full-virtualization requires one to provide the guest
operating systems with an illusion of a complete virtual interface seen
within a virtual machine behavior same as a standard PC/server interface.

2. Para-virtualization This type of virtualization requires modifications to
guest OS to avoid binary translation. Para-virtualization is limiting the
enterprise organization to use this form of virtualization whereas native
windows OS environment can’t use this form of virtualization because
Microsoft usually does not allow modification of OS .

Device interaction in para-virtualization environment is very similar to the
device interaction in full virtualization environment; the virtual devices
in para-virtualized environment also entirely rely or depend on physical
device drivers of the host Machine.

3. Hardware supported virtualization This type of virtualization is offered
from a big hardware companies such as Intel and AMD. In architecture
point of view we can said that the virtualization layer below the operat-
ing system is termed as Virtual Machine Monitor (VMM) that provide
flexibility to run multiple operating Systems.

4. Resource virtualization There are various approaches to perform resources
virtualization some of them are

Computer cluster (Grid Computer) which used forhigh availability sys-
tems in these techniques is well known specially in an enterprise environ-
ment spicily in financial environment where multiple discreet computers
combined to form large supercomputers with enormous resources.

Make a large resource pool consist of many individual components. The
third one is opposite the previous one which is partitioning a single re-
source into number of smaller resources can be accessed separately at the
same time with others.

9.3 BENEFITS OF VIRTUALIZATION

1. Real Estate Savings: By doing Server consolidations that will cause to
reduce the number of physical servers required in the data center and thus
increase the throughput per sqft. Of the data center.

2. Greener IT: the energy requirement to power up the servers Power Con-
sumption and cool the data center will go down.

3. Ease of maintenance: The effort required to maintain enterprise infras-
tructure will greatly reduce due to less number of servers.

4. Mobility: this benefits it is gives the environment more availability be-
cause the virtual image you can move it to any server in your organization.

5. Disaster recovery: with visualization it is easy to do a backup based on
some backup software which make the life easy in case of disaster recovery.

9.4 SECURITY PROBLEMS IN VIRTUAL ENVIRONMENT

As much as VM and VMM and its environ is very safe, there are also a few
security problem that can be encountered and they include the following:

1. Scaling The rapid scaling in virtual environments can tax the security
systems of an organization. Rarely are all administrative tasks completely
automated. Therefore, rapid and erratic growth might occur that can
make worse management of virtual machines and multiply the impact of
disastrous such as virus attacks.

2. Software lifecycle In a virtual environment machine state is more akin
to a tree: at any point the execution can fork off into N different branches,
where multiple instances of a VM can exist at any point in this tree at

a given time. For example, in case of any crash to the virtual OS rolling
back a machine can re-expose patched vulnerabilities, reactivate vulner-
able services, re-enable previously disabled accounts or passwords, use
previously retired encryption keys, and change firewalls to expose vulner-
abilities. It might introduce worms, viruses and other malicious code that
had previously been removed.

3. Diversity If the virtual machines in the environment does not have the
same level of security patches update then this will creates a range of
problems as one must try and maintain patches or other protection for a
wide range of OS, and deal with the risk posed by having many un-patched
machines on the network

The concept of virtual machines is not new. In the 60’s, IBM first developed
virtual machines to share machine resources among users. The virtual machine
has always been an interesting research topic, and recently it draws more at-
tention than ever. Virtual machines are the need of the day to reduce cost
factor in computing environment, however, it is a big threat if taken incorrectly.
Nonetheless, few threats pointed already discussed in detail in this paper, might
be taken as benefits in certain conditions, however, the purpose here is to fully
aware its users to take appropriate care while designing and implementing the
virtual machine environment. We can also conclude that, any single virtualiza-
tion technology is not enough to protect all security flaws. Hence, to come out
with a good virtualization environment, careful selection of the virtualization
environment is mandatory while keeping in view requirements and aims of the
enterprise.At the same time, all the potential security concerns that put the
virtual machines at threat should not be overlooked

Author contributions

I solely wrote the entirety of this paper but the codes and research was based
on the authors of the books, research papers, scholarly reviewed journals, some
of the codes were gotten from websites cited below and some written by me and
overall assessment by my instructor, Dr. Cueva Parra. Wanengimorte George
Bokolo helped me do grammar check only.

References

1. Security in Computing, 4th Edition ISBN: 0132390779 EAN: 2147483647Year:
2006 Pages: 171Authors: Charles P. Pfleeger, Shari Lawrence Pfleeger

2. Bauer, L., Ligatti, J., and Walker, D. 2005. Composing security policies
with polymer. In ACM Conference on Programming Language Design
and Implementation (PLDI). Chicago, 305–314.

3. Bauer, L., Ligatti, J., and Walker, D. (2005)Composing security with
polymer. Chicago, Illinois,USA. June 12-15 2005. Retrieved 22 July 2018.
http://www.ece.cmu.edu

4. De Clercq,R.,Verbauwhede, I.,Luven,K.(2017)A survey of hardware-based
control flow integrity(CFI).ACM comput.surv. 31st July 2017, p 1-27.
Retrieved July 2018. http://arxiv.org

5. Virtualization: Much More Than Virtual Machines Old ideas of virtual-
ization still hold, even in 2016 By Dan Kusnetzky January 4, 2016.

6. http://codearcana.com/posts/2013/05/02/introduction-to-format-string-exploits.html

7. Survey of Virtual Machine Research – R. P. Goldberg, 1974

8. Carrier, B (2001). "Defining digital forensic examination and analysis
tools". Digital Research Workshop II. Archived from the original on 15
October 2012. Retrieved 2 August 2010.

9. M Reith; C Carr; G Gunsch (2002). "An examination of digital forensic
models". International ‘ Journal of Digital Evidence. Archived from the
original on 15 October 2012. Retrieved 2 August 2010.

10. T. Abraham, R. Kling and O. de Vel, (2002) Investigative profile analysis
with computer forensic log data using attribute generalization, Proceed-
ings of the Fifteenth Australian Joint Conference on Artificial Intelligence.

11. K. Bailey and K. Curran (2003), An evaluation of image based steganog-
raphy methods, International Journal of Digital Evidence, vol. 2(2).

12. N. Beebe and J. Clark, (2005), A hierarchical, objectives-based framework
for the digital investigations process, Digital Investigation, vol. 2(2), pp.
147–167.

13. N. Beebe and J. Clark,(2005), Dealing with terabyte data sets in digital
investigations, in Advances in Digital Forensics, M. Pollitt and S. Shenoi
(Eds.), Springer, Boston, Massachusetts, pp. 3–16.

14. N. Beebe and J. Clark, (2007) Digital forensic text string searching: Im-
proving information retrieval effectiveness by thematically clustering search
results, Digital Investigation, vol. 4(S1), pp. 49 -54.

15. N. Beebe, S. Stacy and D. Stuckey, (2009) Digital forensic implications
of ZFS, to appear in Digital Investigation. N.Beebe, digital forensic re-
search:The good, the bad and the Unaddressed

16. M.Abadi et al (2007) control flow integrity principles , implementations
and applications. AMC Control Flow integrity Retrieved July 2018

17. David Cary. "Endian FAQ". Retrieved 2010-10-11, https://en.wikipedia.org/wiki/Endianness

18. Dhaval Kapil, Buffer Overflow Exploit, https://dhavalkapil.com/blogs/Buffer-
Overflow-Exploit/ April 3rd, 2015

19. Splone UG , Integer Overflow Prevention in C, https://splone.com/blog/2015/3/11/integer-
overflow-prevention-in-c/ 11 March, 2015

20. FLylib.com, Section 4.2. Memory and Address Protection, https://flylib.com/books/en/4.270.1.46/1/,
2008-2017

21. Alex Allain, Printf Format Strings, https://www.cprogramming.com/tutorial/printf-
format-strings.html, 1997-2017

22. https://www.prepostseo.com/compare/136112740328d855f35d8701e2e091713bdae9e6fc483748720

23. https://www.safaribooksonline.com/library/view/security-in-computing/0130355488/0130355488-
ch04lev1sec2.html : Copyright c© 2018 Safari Books Online.

24. Saif El-Sherei, www.elsherei.com, https://www.exploit-db.com/docs/english/28477-
linux-integer-overflow-and-underflow.pdf

25. Jmanico, Buffer Overflow, https://www.owasp.org/index.php/Buffer-overflow-
attack, June 29, 2016

26. Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, Hervé Marchand, Run-
time Enforcement of Parametric Timed Properties with Practical Applica-
tions, https://www.sciencedirect.com/science/article/pii/S1474667015374371,

Author: Bokolo, George Biodoumoye.

