Stock Market Prediction - Buy or Sell?

Koren Maliniak (ID. 200319572), Ido Markovitz (ID. 305490104)

Submitted as final project report for Deep Learning, IDC, 2019

1 Introduction

The subject we chose to research is a reduction of the popular problem of stock
price prediction from the finance field. The chosen problem is that of a trader
who needs to decide when to buy a stock (long) and when to sell (short). It’s
a reduction of stock price prediction because we don’t output a specific stock
price, we just have to decide whether to buy or sell. We chose this problem
because we learned that stock price prediction is a very difficult problem, and
we wanted to challenge ourselves. We did look at other tasks, such as machine
translation or classification of music, but we saw a lot of online implementations
for it and that would’ve made things a little too easy. We had several goals in
mind when approaching this project. First and foremost, we wanted to establish
an end-to-end solution for a deep learning problem from scratch. That means:
harvesting the data, shaping it, extracting features, choosing and building the
model, training the model, and measuring results. Second, we wanted to see
if we can ”crack” this problem, as it has very obvious and distinct real-life
applications.

1.1 Related Works

There are some examples online regarding stock price prediction (which you
could then reduce into our buy/sell problem). None of the examples seemed to
solve the problem. It makes sense that there are no published results that solve
this problem because if anyone found a solution to this problem they would
probably turn it into a hedge fund, and not publish it online. The following
notebook is an example of a project aimed at solving stock price prediction. It
managed to guess a trend, sometimes:

Using a Keras Long Short-Term Memory (LSTM) Model to Predict Stock Prices

https://www.kdnuggets.com/2018/11/keras-long-short-term-memory-lstm-model-predict-stock-prices.html

2 Problem Description

We are trying to build a strategy for the financial stock market, that at the end
of any given day, will propose whether to buy a stock, or sell it. We have in our
hands a statistical, momentum-based financial model that for our purposes is
a block-box. The input to the algorithm is the stock end of month close price,
and its output are two series A and B.

The algorithm works well when back-tested on a monthly basis. Meaning
inputting the current stock price of today, computing A and B and checking the
yield. But when testing the algorithm ”day-by-day” as if it "lives” in the past,
the results are not that good. The reason is a lot of false positive signals. E.g.
on the 15 of the month the algorithm outputs a signal to buy, but when reaching
end of month it falls back. those 15 days are usually a loss in yield. Our goal
in this project is to predict when a signal is false positive and when it is a true
positive. Figure 1 depicts the output of the algorithm tested for a specific day
in regard to some stock. Series A and B are depicted as the green and red lines.
When the series intersect it means that we should either go into a buy (long)
position or into a sell (short) position. This example is the wrong type of back
testing because A and B are calculated with respect to the current present day.
and not as if you are currently at each signal day as it was predicted in ”real
life situation”.

I I Il|
1 | .
| R |
il

Figure 1: Series A (green) and B (red) intersecting to indicate when to buy or
sell a stock

As mentioned above, the algorithm works well when its input is the stock
price at the end of the month (and all previous historical data), but when tested
on a specific day in the month we may receive false positive signal. A false
positive signal occurs when the algorithm shows series A and B as intersecting

at some day in the month, but as we gather more data towards the end of the
month we learn that the series did not in fact intersect on those days. That
means that the buy (or sell) operation offered by the algorithm was wrong, and
we end up with a bad decision. The goal of this paper is to minimize these
false positive signals so that we can improve our buy and sell strategy. Figure
2 depicts a false positive signal. On the first row in the 5th picture we can
see the lines intersect which suggests a buy. Towards the end of the month, as
we get more data about the stock price, we learn that the lines never actually
intersected and that the buy was a false signal.

T B Bt A S g B et i P o

P S S e

Figure 2: Algorithm outputs, each figure depicts the output of the algorithm
given that day’s closing stock price

3 Solution

3.1 General approach

As mentioned above, the goal of our project was to design, build and train
a model that will allow us to identify our black-box algorithm’s false positive
signals and therefore improve its buy/sell trading strategy. Our solution outline
is as follows:

1. Procuring raw stock price data for processing

2. Running the data through our black-box algorithm (creating the tags)
3. Creating features for the tagged data

4. Designing, creating and training our model

5. Testing the model

Our model results will then be tested against classic models using the same
input data. We will now go into further detail for each aspect of the solution.

3.2 Procuring raw stock price data for processing

We used raw stock price data for the S&P 500 index. Later on we decided to
expand our universe by using the Russel index (3000 stocks).

3.3 Running the data through our black-box algorithm
(creating the tags)

We started off by running a few for loops in order to run through the raw data
and feed it to the black-box algorithm. (”day-by-day”) This turned up to be
slower than we thought, so we improved it by changing the architecture to a
vectorized one using pandas and numpy. This gave exponential improvement in
speed. We also looked into Python green threads (a user-space multi threaded
approach), but decided not to implement the solution since the vectorized ap-
proach was working well enough for our needs.

3.4 Creating features for the tagged data

The created features are composed of different families.
1. Raw Stock price
2. Time series values as outputted by the black-box statistical algorithm
3. Pre-engineered features that we thought would help such as:

(a) The angle between the series at a certain point

(b) The distance between the lines
(¢) The linear equation of each line

(d) Momentum of the difference between A and B (total of ups and
downs)

(e) The distance to the point of intersection between the two lines

3.5 Designing, creating and training our model

Throughout the project we tried several different architectures as well as several
models from different learning families. We added more and more things to the
model to try and improve our results. The following list outlines the process:

i. Started with a simple LSTM to which we fed the data as input (monthly
data)

ii. Added batch normalization and dropout
iii. Added several dense layers

iv. Using methods like over samplling or class weights because our classes were
66% vs. 33%

v. We realized we should create and add daily and weekly data, as we explored
and visualized our data we saw that coming to a signal the daily and weekly
re-sampled data can also have predictive value

vi. Adding daily and weekly data caused us to look at the Keras functional
APT as it required low level operations

vii. Ended up with 3 sub-models each composed of several LSTM layers whose
outputs we connected to a final layer that calculated the result

viii. Tried a bi-directional LSTM

Figure 3 depicts the model as output by Keras.

input_2: InputLayer

Istm_2: LSTM input_1: InputLayer input_3: InputLayer
L 1
batch_normalization_2: BatchNormalization Istm_1: LSTM Istm_3: LSTM
1 Y
dense_3: Dense batch_normalization_1: BatchNormalization batch_normalization_3: BatchNormalization
\ ‘ /
dense_4: Dense dense_1: Dense dense 6: Dense
\ ‘ /
dense_5: Dense dense_2: Dense dense_7: Dense
I , /
flatten_2: Flatten flatten_1: Flatten flatten_3: Flatten
concatenate_1: Concatenate
9
dense_8: Dense
1

dense_9: Dense

Figure 3: The final model

3.6 Testing the model

The loss function we used is a standard binary cross entropy. The score for
prediction is classification score. While training the model we encountered a
problem where the loss function is not identical to what we are trying to measure,
and using the naive greater than 0.5 probability function didn’t suit our cause as
well. We therefore created custom accuracy functions, with different threshold.
SO discussion regarding loss vs. score.

https://stackoverflow.com/questions/47891197/cost-function-training-target-versus-accuracy-desired-goal/47910243#47910243

4

Experimental results

We didn’t manage to improve our false positive rate and predict a buy/sell
strategy. Either the model over-fit the training data and predicted a random
chance on the test or it always predicted the majority class. Figure 4 depicts
loss and accuracy.

Loss

15 { — train

test
10 4

05 4 k
00 4

0.0 25 5.0 15 100 135 150 175

Accuracy

10
— frain

test
08

06 — — —

00 25 50 75 100 125 150 175

Figure 4: Loss and accuracy

We tried using several classic models as well to compare, and we ended up
getting similar results. The classical model implementatoins can be found in
the colab and include SVM, Random forest, Decision tree, KNN regressor and
Gradient Boosting.

5

Future work

There are several things we can do in the future to try and improve our results:

1.
2.

Log scaling the information of the stocks in order to normalize the data

"Playing” around with the hyper parameters of our learning network as
well as the architecture itself (there our automated libraries in python for
that)

Extracting PCA and using it
Running the network using only our extracted features
Running the network only using raw data

Randomly combining features in order to empirically improve our results

7. Implement and use Attention Layers to try and improve our results

8. Ome algorithmic direction can be to create a heuristic regarding when
to buy. E.g. not to buy at the first day of the signal, but wait for 2
consecutive days with signal. When researching a bit in that direction we
found that this simple rule dropped the false positives rate by 20%, but
also effected the yield of the entire strategy. So an interesting direction
can be to combine a heuristic with some deep learning model probability.

6 Code & design

Short description of the github code:

1. Digestors - wraps the logic of structuring the data and creating the features
2. Signals, features - the logic
3. Data - handles getting the data via API

4. Main - runs the code

hitps : //github.com/koren88i/ DeepLearning — ClassificationO f FinAlgo
hitps : //colab.research.google.com/drive /1Y 0I K I[iU E1ibSi5D AioZV SyY 0nQJFY vP_

7 Discussion & summary

It seems that the problem we chose, that is eliminating our false positives and
achieving a better buy/sell strategy is not very far from prediction stock price.
It’s not very far from predicting stock price in the sense that it’s a difficult
problem that’s not easily solvable. We thought that there would be a difference
between artificially created features in order to classify a signal vs. end to
end learning for price prediction, but at least with regards to our problem and
solution there was no difference (both produced the same results). Classical
models achieved the same results as our model. In some of our experimental
results it appears that we over-fit the model. It is therefore possible that getting
more data could have helped us achieve better results. We could potentially use
all U.S stock market stocks data, but that would’ve only tripled our data, which
wouldn’t have made much of a difference for a deep learning model (still same
scale of the number of examples).

To conclude, we managed to tackle a learning problem and implement all
stages in the research and development cycle. From data gathering, through
feature engineering, to model building, optimization and testing. Even though
we were not able to reach our goal, we learned a lot in the process.

https://github.com/koren88i/DeepLearning-ClassificationOfFinAlgo
https://colab.research.google.com/drive/1Y0IKIiUE1ibSi5DAioZVSyY0nQJFYvP_

	Introduction
	Related Works

	Problem Description
	Solution
	General approach
	Procuring raw stock price data for processing
	Running the data through our black-box algorithm (creating the tags)
	Creating features for the tagged data
	Designing, creating and training our model
	Testing the model

	Experimental results
	Future work
	Code & design
	Discussion & summary

