The Sine Rule

1915774 - Sally Lewis

October 2019

1 The Sine Rule:

Suppose that we have a triangle with sides of length a, b and c with the angles opposite these sides labelled α, β and γ respectively. Then

$$\frac{\sin\alpha}{a} = \frac{\sin\beta}{b} = \frac{\sin\gamma}{c}.$$

In an exam a student answered the question 'State and prove the Sine Rule' with the following:

$$\frac{\sin\alpha}{a} = \frac{\sin\beta}{b} = \frac{\sin\gamma}{c}.$$

Using basic Trigonometric formulas: $sin\alpha = \frac{h}{c}$ so, $h = csin\alpha$.

 $sin\gamma = \frac{h}{a}$ so, $h = asin\gamma$. This means $csin\alpha = asin\gamma$.

Hence $\frac{\sin\alpha}{a} = \frac{\sin\gamma}{c}$.

Next we look at $sin\beta = \frac{h2}{a}$ therefore $h2 = asin\beta$. Then $sin\alpha = \frac{h2}{b}$ so $h2 = bsin\alpha$.

Hence $\frac{\sin\beta}{b} = \frac{\sin\alpha}{a}$. This means $a\sin\beta = b\sin\alpha$.

Therefore in conclusion

$$\frac{\sin\alpha}{a} = \frac{\sin\beta}{b} = \frac{\sin\gamma}{c}.$$

We have proved the initial equation given:

$$\frac{\sin\alpha}{a} = \frac{\sin\beta}{b} = \frac{\sin\gamma}{c}.$$