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Problem1

Show that for any a ∈ Rd+1

Ep(x,y)[(y − w∗Tx)aTx] = 0

w∗ = arg min
w

N∑
i=1

(yi − wTxi)2 ⇒ L(w,X, y) = L(w) = 1
N

N∑
i=1

(yy − wTxi)2

Since w∗ is optimal solution
∂L(w,X, y)

∂w
= 0

Derivatices w.r.t w0, w1, ..., wd must all be zero

L(w) = 1
N

N∑
i=1

(yi − wTxi)2

∂

∂w0
L(w) =

1

N

N∑
i=0

∂

∂w0
(yi − wTxi) = 0

It apply that
N∑
i=0

(yi − wTxi) = 0

Ep(x,y)[(y − w∗Tx)aTx] =
∫ ∫

((y − w∗Tx)aTx) p(y|x)p(x)dydx =
∫
Ey|x[yi − wTxi](aTx)p(x)dx = 0
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Problem2

Explain how the original statement, regarding zero correlation between prediction errors made by ŵ esti-
mated by least squares with any linear function of the training xi, follows from Ep(x,y)[(y−w∗Tx)aTx] = 0

Naturally, any model is highly optimized for the data it was trained on. The expected error the model
exhibits on new data will always be higher than that it exhibits on the training data. As example, we
could go out and sample 100 people and create a regression model to predict an individual’s happiness
based on their wealth. We can record the squared error for how well our model does on this training
set of a hundred people. If we then sampled a different 100 people from the population and applied our
model to this new group of people, the squared error will almost always be higher in this second case.

It is helpful to illustrate this fact with an equation. We can develop a relationship between how well
a model predicts on new data (its true prediction error and the thing we really care about) and how well
it predicts on the training data (which is what many modelers in fact measure).

True Prediction Error=Training Error+Training Optimism
Here, Training Optimism is basically a measure of how much worse our model does on new data

compared to the training data. The more optimistic we are, the better our training error will be compared
to what the true error is and the worse our training error will be as an approximation of the true error.

Training error almost always UNDER estimates test error, sometimes dramatically.
Training error usually UNDER estimates test error when the model is very complex (compared to

the training set size), and is a pretty good estimate when the model is not very complex.
However, it’s always possible we just get too few hard-to-predict points in the test set, or too many

in the training set. Then the test error can be LESS than training error, when by chance the test set
has easier cases than the training set.
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Problem3

Let ŵ be the least square estimate of the regression parameter from the unscaled X, and let ˆ̃w be the
solution obtained from the scaled X. Show that the scaling does not change optimality, in the sense that
ŵTx = ˆ̃wT x̃.

First, note that scaling can be represented as a linear operation C composed of the scaling factors
along its main diagonal.

C =


1

c1
. . .

cd


Using the scaling Operator C, we can express the scaled inputs x̃ and design matrix X̃ as function of x
and X respectively.

x̃ = Cx X̃ = XC (1)

As was demonstrated in class, under the Gaussian noise model, the ML estimate of the regression
parameters in given by

x̂ = (XTX)−1XT y

Using the expression in Equation 5, we find

ˆ̃w = (X̃T X̃)−1X̃T y = ((XC)TXC)−1(XC)T y = (CXXTXC)−1CTXT y

At this point, we can apply the following matrix identity: if the individual inverses A−1 and B−1

exits, then (AB)−1 = B−1A−1. Since C is real, symmetric square matrix, C−1 must exist. Similarly,
XTX is real, symmetric square matrix so (XTXC)−1 must also exist. As a result, we can apply the
matrix identity to the previous expression.

A = ((CT )(XTXC))−1CTXT y

= (XTXC)−1(CT )−1CTXT y

= C−1(XTX)−1XT y

= C−1ŵ

(2)

To prove that the scaled solution is optimal, we apply Equation 1 and w as follows. Recall that
(A−1)T = (AT )−1. As a result, (C−1)T = (CT )−1. Since C is a real, symmetric matrix, C = CT and,
as a result, (C−1)TC = I.

ŵTx = ˆ̃xT x̃
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Problem4

we can solve for the least squares polynomial regression coefficients ŵ by using the extended design
matrix X̃ such that

ŵ = (X̃T X̃)−1X̃T y, where X̃ =


1 x1 x21 · · · xd1
1 x2 x22 · · · xd2
...

...
...

. . .
...

1 xN x2N · · · xdN


where d is the degree of the polynomial and x1, ....., xN and y are the observed points and their

associated labels, respectively. To prevent numerical round-off errors, this method was applied to the
column-normalized design matrix X̃ using degexpand.m within the main script prob5.m (as discussed
in Problem 2). The resulting linear and quadratic polynomials are shown in Figure 2(a). The fitting
parameters obtained using all data points and up to a fourth-order polynomial are tabulated below.

Polynomial Degree Empirical Loss Log-likelihood 10-fold Cross Validation Score
Linear (d = 1) 1.057 -529.5 1.063

Quadratic (d = 2) 0.930 -506.1 0.943
Cubic (d = 3) 0.930 -506.1 0.947

Quartic (d = 4) 0.925 -505.1 0.950

Note that the empirical loss LN is defined to be the average sum of squared errors as given by Equation
9. The log-likelihood of the data (under a Gaussian model) was derived in class on 9/11/06 and is given

by Equation 7 as l(Y ;w, σ) = − 1
2σ2

N∑
i=1

(yi − f(xi : w)2 −N log(σ
√

2π) where σ → σ̂ML is the maximum

likelihood estimate of 3
4 under a Gaussian noise model (as given by Equation 8 in Problem 3). At this

point, we turn our attention to the model-order selection task (i.e., deciding what degree of polynomial
best-represents the data). As discussed in class of 9/13/06, we will use 10-fold cross validation to select
the best model. First, we partition the data into 10 roughly equal parts (see lines 65-70 of prob5.m).
Next, we perform 10 sequential trials where we train on all but the ith fold of the data and then measure
the empirical error on the remaining samples. In general, we formulate the k-fold cross validation score
as

L̂k = 1
N

k∑
i=1

∑
j∈fold i

(yi − f(xj ; ŵi)
2

where ŵi is fit to all samples except those in the ith fold. The resulting 10-fold cross-validation scores
are tabulated above (for up to a fourth-order polynomial). Since the lowest cross-validation score is
achieved for the quadratic polynomial we select this as the best model.

In conclusion, we ¯nd that the quadratic polynomial has the lowest cross-validation score. However,
as shown in Figure 2(b), it is immediately apparent that the Gaussian noise model does not accurately
represent the underlying distribution; more specifically, if the underlying distribution was Gaussian, we’d
expect half of the data points to be above the model prediction (and the other half below). This is clearly
not the case for this example motivating the alternate noise model we’ll analyze in Problem 6.
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Problem5

Part 1: Consider the noise model y = f(x;w) + v in which v is drawn from p(v) as follows.

p(v) =

{
e−v if v > 0,
0 otherwise

Perform 10-fold cross-validation for linear and quadratic regression under this noise model, using ex-
haustive numerical search similar to that used in Problem 4. Plot the selected model and report the
empirical loss and the log-likelihood under the estimated exponential noise model.

let’s begin by defining the distribution of the label y, given the input x.

p(y|x,w) =

{
exp(−(y − f(x;w)))−v if y > f(x;w),
0 otherwise

Once again, we assume that the observations are i.i.d. such that the likelihood P is given as follows.

P (Y ;w) =

N∏
i=1

p(yi|xi, w) =

N∏
i=1

{
exp(f(xi;w)− yi) if yi > f(x;w),
0 otherwise

The log-likelihood l is then given by

l(Y ;w) = logP (Y ;w) =

N∑
i=1

{
exp(f(xi;w)− yi) if yi > f(xi;w),
∞ otherwise

since the logarithm is a monotonic function and limx→∞ log x = −∞.The corresponding ML estimate
for w is given by the following expression.

ŵML = arg max
w

(Y ;w) = arg min
w

N∑
i=1

{
exp(yi − f(xi;w)) if yi > f(xi;w),
∞ otherwise

Note that Equations 10 and 11 prevent any prediction f(xi;w) from being above the corresponding
label yi. As a result, the exponential noise distribution will effectively lead to a model corresponding to
the lower-envelope of the training data. Using the maximum likelihood formulation in Equation 12, we
can solve for the optimal regression parameters using an exhaustive search (similar to what was done in
Problem 4). This approach was applied to all the data points on lines 19-72 of prob6.m. The resulting
best-fit linear and quadratic polynomial models are shown in Figure 3(a). The fitting parameters obtained
using all the data points and up to a second-order polynomial are tabulated below.

Polynomial Degree Empirical Loss Log-likelihood 10-fold Cross Validation Score
Linear (d = 1) 2.837 -487.5 2.837

Quadratic (d = 2) 1.901 -359.1 1.900

Note that the empirical loss LN was calculated using Equation 9. The log-likelihood of the data
(under the exponential noise model) was determined using Equation 11. Model selection was performed
using 10-fold cross-validation as in Problem 5. The resulting

scores are tabulated above. Since the lowest cross-validation score was achieved for the quadratic
polynomial we select this as the best model and plot the result in Figure 3(b). Comparing the model in
Figure 3(b) with that in Figure 2(b), we conclude that the quadratic polynomial under the exponential
noise model better approximates the underlying distribution; more specifically, the quadratic polynomial
(under an exponential noise model) achieves a log-likelihood of -359.2, whereas it only achieves a log-
likelihood of -506.1 under the Gaussian noise model. It is also important to note that the Gaussian
noise model leads to a lower squared loss (i.e., empirical loss), however this is by the construction of
the least squares estimator used in Problem 5. This highlights the important observation that a lower
empirical loss does not necessarily indicate a better model -this only applies when the choice of noise
model appropriately models the actual distribution.

Part 2: Now evaluate the polynomials selected under the Gaussian and exponential noise models for
the data in 2005. Report which performs better in terms of likelihood and empirical loss.
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Noise Model Empirical Loss Log-likelihood
Gaussian (d = 2) 2.837 2.837

Exponential (d = 2) 1.901 1.900

In both Problems 5 and 6.1, the quadratic polynomial was selected as the best model by 10-fold cross
validation. In order to gauge the generalization capabilities of these models, the 2004 model parameters
we used to predict the 2005 samples. The results for each noise model are tabulated below.

In conclusion, we find that the Gaussian model achieves a lower empirical loss on the 2005 samples.
This is expected, since the Gaussian model is equivalent to the least squares estimator which minimizes
empirical loss. The exponential model, however, achieves a significantly higher log-likelihood - indicating
that it models the underlying data more effectively than the Gaussian noise model. As a result, we
reiterate the point made previously: low empirical loss can be achieved even if the noise model does not
accurately represent the underlying noise distribution.
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