Complex Numbers

Junha Park

December 10, 2014

1 Warm-Up Set

1. Let $z^{4}=1$. (a) What are the four complex roots of z ? (b) Draw the roots of z on the complex plane.
2. Now let $z^{5}=1$. (a) What are the five complex roots of z ? (b) Draw the roots of z on the complex plane.
3. Let w be a complex number such that $|w|=3$. Find the largest possible value of $|i+1-w|$.

2 Practice

1. The complex number z is equal to $9+b i$, where b is a positive real number and $i^{2}=-1$. Given that the imaginary parts of z^{2} and z^{3} are the same, what is b equal to?
2. There is a complex number z with imaginary part 164 and a positive integer n such that $\frac{z}{z+n}=4 i$. Find n.
3. Let $P(z)=x^{3}+a x^{2}+b x+c$, where a, b, and c are real. There exists a complex number w such that the three roots of $P(z)$ are $w+3 i, w+9 i$, and $2 w-4$, where $i^{2}=-1$. Find $|a+b+c|$.
4. Let $z=a+b i$ be the complex number with $|z|=5$ and $b>0$ such that the distance between $(1+2 i) z^{3}$ and z^{5} is maximized, and let $z^{4}=c+d i$. Find $c+d$.
5. The complex numbers z and w satisfy $z^{13}=w, w^{11}=z$, and the imaginary part of z is $\sin \frac{m \pi}{n}$, for relatively prime positive integers m and n with $m<n$. Find n.
6. (Challenge Problem) Complex numbers a, b, and c are zeros of a polynomial $P(z)=z^{3}+q z+r$, and $|a|^{2}+|b|^{2}+|c|^{2}=250$. The points corresponding to a, b, and c in the complex plane are the vertices of a right triangle with hypotenuse h. Find h^{2}.
