Complex Numbers

Junha Park

December 10, 2014

1 Warm-Up Set

- 1. Let $z^4 = 1$. (a) What are the four complex roots of z? (b) Draw the roots of z on the complex plane.
- 2. Now let $z^5 = 1$. (a) What are the five complex roots of z? (b) Draw the roots of z on the complex plane.
- 3. Let w be a complex number such that |w| = 3. Find the largest possible value of |i + 1 w|.

2 Practice

- 1. The complex number z is equal to 9+bi, where b is a positive real number and $i^2 = -1$. Given that the imaginary parts of z^2 and z^3 are the same, what is b equal to?
- 2. There is a complex number z with imaginary part 164 and a positive integer n such that $\frac{z}{z+n} = 4i$. Find n.
- 3. Let $P(z) = x^3 + ax^2 + bx + c$, where a, b, and c are real. There exists a complex number w such that the three roots of P(z) are w + 3i, w + 9i, and 2w 4, where $i^2 = -1$. Find |a + b + c|.
- 4. Let z = a + bi be the complex number with |z| = 5 and b > 0 such that the distance between $(1 + 2i)z^3$ and z^5 is maximized, and let $z^4 = c + di$. Find c + d.
- 5. The complex numbers z and w satisfy $z^{13} = w$, $w^{11} = z$, and the imaginary part of z is $\sin \frac{m\pi}{n}$, for relatively prime positive integers m and n with m < n. Find n.
- 6. (Challenge Problem) Complex numbers a, b, and c are zeros of a polynomial $P(z) = z^3 + qz + r$, and $|a|^2 + |b|^2 + |c|^2 = 250$. The points corresponding to a, b, and c in the complex plane are the vertices of a right triangle with hypotenuse h. Find h^2 .