
UNIVERSITY OF TEXAS AT AUSTIN

Stat/Discrete Methods for Sci Computing
Problem Set 1

Qi Lei

January 26, 2015

1 EXERCISE 1
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(2) Compare the Markov and Chebyshev bounds for the following probability distributions:

a) p(x) =
{

1, x = 1
0, otherwise

b) p(x) =
{ 1

2 , 0 ≤ x ≤ 2
0, otherwise

Solution:
For a), E(x) = 1, V ar (x) = 0. So Markov inequality for a) is Pr ob(x ≥ a) ≤ 1

a , while Chebyshev
inequality for a) vanishes to Pr ob(|x −1| > 0) = 0.
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For b), E(x) = ∫ 2
0

1
2 xd x = 1, V ar (x) = ∫ 2

0
1
2 (x − 1)2d x = 1

3 . So Markov inequality for b) is
Pr ob(x ≥ a) ≤ 1

a (which is the same as in problem a)), while Chebyshev inequality for b)

is Pr ob(|x −1| >
√

1
3 a) ≤ 1

a2 .

(3) Let s be the sum of n independent ransom variables x1, x2, · · · , xn where for each i ,

xi =
{

0, Prob is p
1, Prob is 1−p

How large must δ be if we wish to have Prob(s > (1+δ)n) < ε

Solution:
E(xi ) = 1−p, V ar (x) = (1− (1−p))2(1−p)+ (0− (1−p))2p = p2(1−p)+ (1−p)2p = p2 −p3 +
p −2p2 +p3 = p −p2.
So Pr ob(x ≥ a) ≤ 1−p

a for each i . So E(s) = n(1−p), V ar (s) = np(1−p).

Applying Markov inequality we get Prob(x ≥ n(1+δ)) ≤ n(1−p)
n(1+δ) = ε. So δ= 1−p

ε −1

Applying Chebyshev inequality we get Prob(|s −n(1−p)| > anp(1−p)) ≤ 1
a2 = ε. So a =

√
1
ε

Prob(x < n(1−p)−
√

1
εnp(1−p) ≤ ε. Therefore take δ

.= 1−(1−p)(1−
√

1
ε p). We have for sure

that Prob(x < n(1−δ) =Prob(x < n(1−p)(1−
√

1
ε p) ≤ ε.

2 EXERCISE 2

(1) For what values of d do area, A(d), and the volume, V (d), of a d-dimensional unit sphere
take on their maximum values?

A(d) = 2πd/2

Γ( d
2 )

A(d +2)

A(d)
= 2π

d

{ < 1, d ≥ 7
> 1, d ≤ 6

This means · · · < A(11) < A(9) < A(7) > A(5) > A(3) and · · · < A(10) < A(8) > A(6) > A(4). A(7)
and A(8) are the largest A(d) for respectively odd d and even d . While A(7) = 2π3.5

Γ(3.5) ≈ 33.07,

and A(8) = 2π4

Γ(4) ≈ 32.47. So A(7) = 2π3.5

Γ(3.5) is the largest A(d) for every d ≥ 1.

V (d) = 2πd/2

dΓ( d
2 )

V (d +2)

V (d)
= 2π

d +2

{ < 1, d ≥ 5
> 1, d ≤ 4

This means V (5) and V (6) are the largest volumes V (d) fo respectively odd d and even d .
Turns out V (5) = 2π2.5

5Γ(2.5) ≈ 5.26 (>V (6) ≈ 5.17) is the largest volume.
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(2) How do the area and the volume of a sphere with radius=2 behave as the dimension of
the space increases? What if the radius was larger than two but independent of d?
radius=2

A(d) = 2πd/22d−1

Γ( d
2 )

A(d +2)

A(d)
= 8π

d

{ < 1, d ≥ 26
> 1, d ≤ 25

This means A(26) and A(27) are the largest area A(d) fo respectively even d and odd d . Turns
out A(26) = 214π13

Γ(13) ≈ 4.07×105 (>V (27) ≈ 4.04×105) is the largest area.

V (d) = 2πd/22d

dΓ( d
2 )

V (d +2)

V (d)
= 8π

d +2

{ < 1, d ≥ 24
> 1, d ≤ 23

This means V (24) and V (25) are the largest volumes V (d) fo respectively even d and odd d .
Turns out V (24) = 222π12

3Γ(12) ≈ 3.24×104 (>V (25) ≈ 3.21×104) is the largest volume.

As we can see from the previous analysis, both area and volume increase with respect to d
for smaller d and decrease when d is large. And when radius is larger than 2, this boundary
between increase and decrease will be larger, meaning argmaxd A(d) and argmaxd V (d) will
be larger.

(3) What function of d would the radius need to be for a sphere of radius r to have approxi-
mately constant volume as the dimension increases?

V (d ,r ) = 2πd/2r d

dΓ( d
2 )

V (d +2,r )

V (d ,r )
= 2πr 2

d +2
= 1

∴ r =
√

d +2

2π

Then V (d) =
{ √

6
π , d odd

2, d even

3 EXERCISE 3

(1) For each of a = 2, and 3 give a probability distribution for a nonnegative random variable
x were Prob(x ≥ aE(x)) = 1

a .
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Solution:

a=2: p(x) =
{

1/2, x = 2
1/2, x = 0

E(x) = 1.Prob(x ≥ aE(x)) = Prob(x ≥ 2) = 1

2
= 1

a

a=3: p(x) =
{

1/3, x = 3
2/3, x = 0

E(x) = 1.Prob(x ≥ aE(x)) = Prob(x ≥ 3) = 1

3
= 1

a

(2)

p(x) =
{

1/a, x = a
1−1/a, x = 0

E(x) = 1.Prob(x ≥ aE(x)) = Prob(x ≥ a) = 1

a

4 EXERCISE 4

Suppose sphere 1 is centered at origin, while sphere 2 is centered at ae1 = (a,0,0, · · · ,0). The
intersection becomes {

(x1 −a)2 +x2
2 +·· ·+x2

d ≤ 1
x2

1 +x2
2 +·· ·+x2

d ≤ 1

Consider the cap of S1 {
x1 ≥ a

2
x2

1 +x2
2 +·· ·+x2

d ≤ 1

It’s easy to see this cap is also contained in S2. ((x1 − a)2 + x2
2 + ·· ·+ x2

d ≤ (x1 − a)2 +1− x2
1 ≤

( a
2 −1)2 +1− ( a

2 )2 = 1) Likewise the cap of S2{
x1 ≤ a

2
(x1 −a)2 +x2

2 +·· ·+x2
d ≤ 1

is also contained in S1. So by considering the volume of these two caps we can decide the
volume of their intersection.
Applying the Lemma with the plane x1 = a

2 , (c = a
p

d−1
2 ) we get the fraction of the volume of

the cap is below 2
c e−

c2

2 = 4
a
p

d−1
e−

a2(d−1)
8
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