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1 EXERCISE 1

(1) Given the distribution #Ee_%(g)z what is the probability that x > 12
Solution:

% 1 x
P(x>1) =f xe_%(§)2dx
1

3v2n
1 f XL _1,2 . 5 .1,
= —e 18" dx (¥y=—=x9)
3v2nJ1 2 y 18
3 oo v 4
=— —e
va2mJ L Y
3 1
= ——=e 18
V2n
(2) Compare the Markov and Chebyshev bounds for the following probability distributions:
1, x=1
Q) p(x) = { 0, otherwise
1
5 0=x=<2
Y
b) plx) = { 0, otherwise

Solution:
For a), E(x) =1, Var(x) = 0. So Markov inequality for a) is Prob(x = a) < %, while Chebyshev
inequality for a) vanishes to Prob(]x—1|>0) =0.



For b), E(x) = Ozéxdx =1, Var(x) = fozé(x— 1)2dx = 3. So Markov inequality for b) is

Prob(x = a) < % (which is the same as in problem a)), while Chebyshev inequality for b)

is Prob(lx—1| > \/ga) < %
(3) Let s be the sum of n independent ransom variables x, xp,- -+, X, where for each i,

= 0, Probisp
! 1, Probisl-p

How large must ¢ be if we wish to have Prob(s > (1+6)n) <e

Solution:

E(x)=1-p, Var(x)=(1-1-p)*A-p)+0-1A-p)*p=p*A-p)+1-pPp=p*-p*+
p-2p*+p’=p-p°.

So Prob(xza) < I_Tp for each i. So E(s) = n(1—-p), Var(s) = np(1 - p).

Applying Markov inequality we get Prob(x = n(1+90)) < Zﬁ;g)) =€e.S06 = I_Tp -1

Applying Chebyshev inequality we get Prob(|s —n(1 - p)| > anp(1 - p)) < % =€.Soa= %

Prob(x < n(1-p) - \/gnp(l —p) <e. Thereforetake 6 =1—-(1-p)(1— \/gp). We have for sure
that Prob(x < n(1 — §) =Prob(x < n(1 - p)(1 - \/gp) <e.

2 EXERCISE 2

(1) For what values of d do area, A(d), and the volume, V(d), of a d-dimensional unit sphere
take on their maximum values?

o2
A = T
')

A(d+2) 3 Z_n <1, d=7

A(d) T d |l >1 d<é6

This means --- < A(11) < A(9) < A(7) > A(5) > A(3) and --- < A(10) < A(8) > A(6) > A(4). A(7)
3.5
and A(8) are the largest A(d) for respectively odd d and even d. While A(7) = 2”—) =~ 33.07,

T35
and A(8)z%:32.47. So A(7):§(”T§isthelargestA(d) foreveryd = 1.
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V) = T
dr(s)
Vd+2) 27r{<1, d=5
Vid ~—  d+2| >1, d<4

This means V' (5) and V(6) are the largest volumes V(d) fo respectively odd d and even d.

27.[2.5 .
Turns out V(5) = Tom ~ 5.26 (> V(6) = 5.17) is the largest volume.



(2) How do the area and the volume of a sphere with radius=2 behave as the dimension of
the space increases? What if the radius was larger than two but independent of d?
radius=2

zﬂdlzzd—l
Ad) = —F—
'3
Ad+2) _ 8w | <1, d=26
Ad  d | >1, ds25

This means A(263) and A(27) are the largest area A(d) fo respectively even d and odd d. Turns
1 13
out A(26) = £ % 4.07 x 10° (> V(27) = 4.04 x 10%) is the largest area.
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Vd+2) 87r{<1, d=>24
Vid ~ d+2| >1, d=<23

This means V' (24) and V(25) are the largest volumes V (d) fo respectively even d and odd d.

Turns out V(24) = gzrz(’l’; ~3.24 x 10* (> V(25) = 3.21 x 10%) is the largest volume.

As we can see from the previous analysis, both area and volume increase with respect to d
for smaller d and decrease when d is large. And when radius is larger than 2, this boundary
between increase and decrease will be larger, meaning argmax, A(d) and argmax, V(d) will
be larger.

(3) What function of d would the radius need to be for a sphere of radius r to have approxi-
mately constant volume as the dimension increases?
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Then V(d) = 7 dodd
2, deven

3 EXERCISE 3

(1) For each of a = 2, and 3 give a probability distribution for a nonnegative random variable
x were Prob(x = aE(x)) = %



Solution:

1/2, x=2 B ~ 11
a=2: p(x) —{ 1/2, x=0 E(x) =1.Prob(x = aE(x)) =Prob(x = 2) = 5=
1/3, x=3 B ~ 11
a=3: p(x) —{ 213, x=0 E(x) =1.Prob(x = aE(x)) =Prob(x = 3) = 33

)

l/a, x=a _ _ 1
p(x)—{ 1-1/a, x=0 E(x)—l.Prob(xZaE(x))—Prob(xza)—a

4 EXERCISE 4

Suppose sphere 1 is centered at origin, while sphere 2 is centered at ae; = (4,0,0,---,0). The
intersection becomes

(x1—a)?+x5++x3=<1

X4 x5+ x5 <1

Consider the cap of S;

It’s easy to see this cap is also contained in Sp. ((x1 - @)* + x5+ +x3 < (x1 —a)* +1-x7 <
(4 -1)%+1-($)?=1) Likewise the cap of S,

<
{ (X1 — @)+ X5+ +x3<

is also contained in S;. So by considering the volume of these two caps we can decide the
volume of their intersection.
Applying the Lemma with the plane x; = £, (c = “—Vg_l) we get the fraction of the volume of
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the cap is below Ze™ 2 Pz



