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Abstract

In this thesis, we extend the singlet-doublet fermion dark matter model (SDFDM) with ad-
ditional Z2–odd real singlet scalars fields and we show that neutrino masses and mixings can be
generated at one-loop level. We discuss the salient features arising from the combination of the
two resulting simplified dark matter models. Also, we examine the sensitivities of dark matter
searches in the SDFDM scenario using Fermi-LAT, CTA, IceCube/DeepCore, LUX, PICO and
LHC with an emphasis on exploring the regions of the parameter space that can account for the
excess of gamma rays from the Galactic Center (GCE). We find that DM particles present in this
model with masses close to ∼ 99 GeV and ∼ (173 − 190) GeV annihilating predominantly into
the W+W− channel and tt̄ channel respectively, provide an acceptable fit to the GCE while being
consistent with different current experimental bounds. We also find that much of the obtained
parameter space can be ruled out by future direct search experiments such as LZ and XENON-1T.
Interestingly, we show that the most recent data by LUX is starting to probe the best fit region in
the SDFDM model. Moreover, we report a master equation for the velocity averaged annihilation
cross section 〈σv〉 of DM self-annihilation into two photons in a general model when the DM is its
own antiparticle and whose stability is guaranteed by the Z2 symmetry. This master equation is
general and leads to the same results found in the literature for popular dark matter candidates.
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Chapter 1

Physical problems addressed in this thesis

The physical problems addressed in this thesis are introduced in this chapter. First, the
dark matter (DM) observed in the Universe and the features that support its presence are

explained. Also, the gamma-ray excess found in the galactic center of the Milky Way Galaxy is
discussed in the context of the possible observation of DM annihilation. At the end, the chapter
is focused in the neutrino masses and the possible relation between the DM and neutrino physics
at one-loop level.

1.1 The dark matter in the Universe

It is well established that the DM makes up about 26% of the energy density of the Universe.
It is about six times more abundant than ordinary matter [1]. However, its fundamental nature
remains mysterious. There is not known particle with the properties needed to constitute the DM,
whose identity begs for new physics beyond the standard model (SM). Unveiling which particle
accounts for the majority of the matter in the Universe is a key open question at the interface of
particle physics and cosmology.

Promising candidates for DM particles are weakly interacting massive particles (WIMPs).
These are generally assumed to be at equilibrium in the early Universe, but then freeze-out due to
the rapid expansion of the Universe. If the WIMP masses are in the GeV to TeV range, and the
annihilation cross sections are of order the weak interaction scale, the relic DM density measured
by experiments today arises naturally [2]. In general, there are some experimental facts that
support the DM idea and therefore the structure formation in the Universe [2]. Some of them are
shown in Fig. 1.1 and they will be briefly discussed in the following.

i. Galaxy rotation curves

The rotation curve of a Galaxy (cluster) is the profile of the circular velocity of the stars
(galaxies) around the mass center of the system. It plays an important role because it
is possible to infer the mass distribution of the Galaxy (cluster) after the analysis of this
profile. Historically, the relation between the mass distribution and the rotation curve was
first proposed by Fritz Zwicky in 1937. He analyzed the velocity dispersion of the galaxies
in the Coma cluster, assuming that the outer galaxies were in circular motion around its
mass center. He applied the virial theorem to the Coma cluster in order to estimate its
mass and found that roughly 800 galaxies should exhibit velocities of 80 km/h, however, the
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1.1 The dark matter in the Universe

Evidences

Structure formation

Galaxy rotation curves
CMB

Cluster colisions

for

DarkMatter

Figure 1.1: Some of the most important evidences for Dark Matter.

observed velocity dispersion was approximately 1000 km/h [3]. The problem was known as
the Galaxy rotation problem (for a complete historical discussion see the Ref. [4]). The

Figure 1.2: Rotation curve of the typical spiral Galaxy M 33 (yellow and blue points with errorbars)
and the predicted one from the distribution of the visible matter (white dashed line). The best fit
model for rotation curve is represented by the continuous white line [5] (Taken from Wikipedia -
Public Domain).

general idea under this problem is that when the Newton mechanics is used to explain the
velocity distribution of the stars and visible gas in a Galaxy, the obtained profile (dashed
white line in Fig. 1.2) does not match with the observed behavior that is measured with
some astrophysical techniques such as mass-to-light ratio 1 and the distribution of stars in
the spiral galaxies. This problem is solved if the existence of dark hidden mass is supposed
(dark, because it does not have electromagnetic interactions). Dark hidden mass is present
in the Galaxy with a special distribution which governs its gravitational behavior, giving
the characteristical name of dark matter (DM).

ii. The cosmic microwave background (CMB)

The cosmic microwave background (CMB) is the oldest snapshot of the Universe that we
1The mass-to-light ratio (Υ) is the relation between the total mass of a Galaxy and its luminosity. In astrophysics

the reference value is the mass-to-light ratio of the sun, for that reason for big objects dominated by DM have a
big mass-to-light ratio.
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Chapter 1. Physical problems addressed in this thesis

Figure 1.3: Nine Year Microwave Sky The detailed, all-sky picture of the infant Universe created
from nine years of WMAP data. The image reveals 13.77 billion-year-old temperature fluctuations
(shown as color differences) that correspond to the seeds that grew to become the galaxies. The
signal from our Galaxy was subtracted using the multi-frequency data. This image shows a temper-
ature range of ±200 microKelvin. Credit: NASA / WMAP Science Team WMAP #121238 Image
Caption 9 year WMAP image of background cosmic radiation (2012). (Taken from Wikipedia -
Public Domain).

have. It is the thermal radiation when the Universe was approximate 380.000 years old after
the big bang (z ≈ 1100, T ≈ 3000 K). This radiation was generated in a time in the thermal
history of the Universe called recombination or “time of the last scattering”, which was the
time when the electrons and protons formed bound states and created the neutral hydrogen
in the Universe. Consequently, it was the time when the Universe began to be transparent
to the photons because the atoms could not longer absorb the thermal radiation (photon
decoupling). From that moment, photons have been freely propagating.

The CMB was accidentally discovered in 1964 by the American radio astronomers Arno
Penzias and Robert Wilson. For that achievement, they were awarded the Nobel Prize in
1978. This discovery was considered a big test of the big bang theory and the cosmological
lambda cold dark matter model (Lambda-CDM or Λ-CDM).

In general, the CMB map shown in Fig. 1.3 has a thermal black body spectrum at a temper-
ature of 2.72548± 0.00057 K with a spectral radiance of 160.23 GHz, i.e. in the microwave
range of frequencies. Even more, this spectrum shows tiny temperature fluctuations that
correspond to regions of slightly different densities that were the seeds of all the structures as
the galaxies that are present in the Universe. Theoretically, those temperature fluctuations
are generally expanded in the basis of spherical harmonics (Ylm) as [2, 6]

∆T

T
=
∑
l,m

al,mYlm(θ, φ) , (1.1)

where θ and φ are the spherical angles on the sky. Using this expansion, it follows that the
two-point function of the coefficients alm:

〈alma∗l′m′ 〉 =
2πδll′ δmm′

l(l + 1)
Dl , (1.2)

9



1.1 The dark matter in the Universe

determines the power spectrum of temperature Dl shown in Fig. 1.4.

Figure 1.4: Planck 2015 temperature power spectrum [1]. For multipoles l ≥ 30 is show the maxi-
mum likelihood frequency-averaged temperature spectrum. The best-fit, i.e. the ΛCDM theoretical
spectrum is fitted in the upper panel. Residuals with respect to this model are shown in the lower
panel. The error bars show ±σ uncertainties.

A careful analysis of the spectrum in Fig. 1.4 shows some special features associated with
the primordial (secondary) anisotropies that occurred before (after) the photon decoupling,
which are associated with the interactions of the background radiation with the hot gas and
the gravitational potentials. Those anisotropies are principally determined by two effects
that can be clearly seen in Fig. 1.3 and Fig. 1.4. Briefly, those are:

• The acoustic oscillation: In the primordial plasma there was a competition between
the photons and baryons. The former tend to erase all the anisotropies and the later
moving at a speed much slower than light tend to collapse to form overdensities. It is
in this way that the peaks of the CMB spectrum correspond to resonances in which the
photons have decoupled from the plasma with a particular mode. Roughly speaking,
the angular scale of the first peak in Fig. 1.4 with l ≈ 200 (≈ 1o in galactic coordinates)
determines the curvature of the Universe. For instance, the latest Planck data combined
with gravitational lensing and baryon acoustic oscillation (BAO) [1] indicate that Ωk =

0.000 ± 0.005 to 95% confidence level. This means that the Universe is spatially flat
at high precision. The ratio between the second and the first peak determines the
baryon density. For instance, Ωbh

2 = 0.02230 ± 0.00014 [1]. Finally, the third peak
in combination with the first and the second peak can be used to obtain information
about the dark matter density in the Universe, it is ΩDM = (0.1197± 0.0022) [1].

• The diffusion damping: It is a physical process which reduced density inequalities
(anisotropies) in the early Universe making the CMB more uniform. It happened when
the photons traveled from the hot regions to the cold ones. It is important when the
Boltzmann equation is computed for the CMB, which is not the scope of this work.
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Chapter 1. Physical problems addressed in this thesis

iii. Cluster collisions

In 2006 a group of astronomers published other direct empirical proof of the existence of
the DM [7]. They studied the merging of two clusters of galaxies 1E 0657-558 (z = 0.296)
collectively known as the bullet cluster which collision is estimated that happened ∼ 100

Mys ago and approximately in the plane determined by the velocities of the galaxies (see
Fig. 1.5). In general, they found that there are two concentrations of galaxies separated by
∼ 0.72 Mpc. The right one is moving away at ∼ 4700 km s−1 and it is creating a bow shock
that gives its famous name of bullet cluster.

Figure 1.5: The bullet cluster. The green contours are the reconstruction with gravitational lensing
which is proportional to the mass of the system. The white bar represents a distance of 200 kpc at
the location of the cluster. The colored map on the right shows the same image seen in X-ray for
the merging cluster. It was taken with the Chandra satellite after 500 seconds of exposure. Taken
from [7].

This observation is basically the discovery of one system in which the baryonic matter was
separated from the mass center of each cluster involved in the collision. It was inferred
as follows. On the one hand, using gravitational lensing, the astronomers were able to
reconstruct the contours of the mass projected for the system. They are represented by
the green contours in Fig. 1.5. Basically, the gravitational lensing technique measures the
distortion of the images caused by the gravitational deflection of light by the mass of the
clusters and create a profile of the mass distribution inside the clusters itself. On the other
hand, using the Chandra observation of X-rays they were able to see the X-rays emitted by
the baryonic plasma of the system. The centers of the plasma are shown with the plus signs
in the left panel of Fig. 1.5. Yellow and red parts of the image represent the baryonic plasma
which emits the X-rays. Clearly, this hot plasma does not trace the mass distribution found
with the gravitational lensing reconstruction.

As a conclusion, during the merger, the galaxies behave to be almost collisionless and the
hot plasma decouples of mass that is inferred by gravitational lensing. It can be understood
if we think in two clouds of particles that are colliding. Almost all the particles pass through
each other, i.e. they are collisionless and only the particles that represent the baryonic mass
of the system collides. According to this interpretation, the principal component of the
mass of the system does not interact, it is dark (not baryonic) and correspond to the green
contours shown in Fig. 1.5. Note that this observation is in favor of the DM interpretation

11



1.2 How to search for dark matter?

as a particle. Even more, an alternative explanation using theories of Modified Newtonian
Dynamics of the gravity (MOND) does not predict an offset between mass and light and
could fail to explain this observation of the bullet cluster [8].

After this brief discussion of some of the facts that support the dark matter idea, it is important
to describe briefly how to looking for those particles.

1.2 How to search for dark matter?

• Direct detection:

The idea of direct detection of DM is based on the fact that DM particle (WIMP) is capable
of collide with nucleons. In general, the cross section σ for this interaction will depend on
the naturalness of the DM. In particular, if the cross section depends of the spin of nucleons,
it is called spin-dependent (σSD), otherwise, spin-independent (σSI). Until now, among the
experiments for direct detection of DM, the most restrictive is the Large Underground Xenon
experiment (LUX) 2 , which is located 1,510 m underground at the Sanford Underground
Laboratory in the Homestake Mine in Lead, South Dakota. It is operated underground to
reduce the noise signal caused by high-energy cosmic rays at the Earth’s surface. It is hoped
that the interaction between DM and the liquid Xenon in the detector generates 175 nm
ultraviolet photons and some electrons. In this case, the photons will be detected by two
arrays of 61 photomultiplier tubes at the top and bottom of the detector. The electrons
generated by the particle interactions drift upwards through the xenon gas by an electric
field and produce electroluminescence photons which are detected by the photomultiplier
tubes. Those two signals commonly called S1 and S2 constitute the observable signal in
the LUX experiment. The last result of the LUX experiment for DM interaction spin-
dependent and spin-independent are shown in Fig. 1.6 and Fig. 1.7 respectively. Not signal
observed for DM is interpreted as an exclusion (region above lines). The upper limits put

Figure 1.6: LUX upper limits on the WIMP-neutron (left) and -proton (right) elastic SD cross
section at 90% CL. The Observed limit is shown in black with ±1σ (±2σ) band in green (yel-
low). Also, are shown the results from others experiments and the projected sensitivity for the LZ
experiment. Taken from [9].

2http://luxdarkmatter.org/
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Figure 1.7: LUX upper limits on the spin-independent elastic WIMP-nucleon cross section at 90%
CL [10].

strong constraints for all the DM theories based on the WIMP paradigm (Weakly Interacting
Massive Particles). Specifically, all the region above the black line is excluded at 90% CL.

• Indirect detection:

Stable DM particles in the Universe could annihilate and produce a flux of gamma-rays,
cosmic rays, neutrinos and anti-matter which can appear as an excess over the expected
background, which is created by astrophysical features. In general, this flux can be written
as

dΦ

dΩdE︸ ︷︷ ︸
Diff. Flux

=

Anni. Cross Section︷︸︸︷
〈σv〉

8πm2
χ

× dN

dE︸︷︷︸
Energy Spectrum

×
∫
l.o.s

ds ρ2(−→r (s,Ω))︸ ︷︷ ︸
Dark Matter Distribution

, (1.3)

where Ω is the solid angle of the region of interest, dN/dE is the energy spectrum (e.g. the
number of particles produced per annihilation), σv is the annihilation cross section, and
ρ(−→r (s,Ω)) is the DM density which should be integrated over the line of sight (l.o.s) from
the observer to the source. This density is described by a specific profile, for instance, those
shown in Table 1.1, where ρ� = 0.3GeV/cm3 is the DM density at the sun, rs = 20 kpc is
the scale radius of the halo and R� = 8.5 kpc is the distance from the sun to the center of
the Galaxy [11].

Several experiments for indirect detection of DM have been constructed. One of them is the
Fermi Large Area Telescope (Fermi-LAT) which has a particle detector on board the Fermi
gamma-ray space telescope spacecraft launched in 2008 3. The searches of this experiment
are focused in numerous exotic and beautiful phenomena, which can generate a lot of energy.
For instance, Supermassive black holes, merging neutron stars, streams of hot gas moving

3http://fermi.gsfc.nasa.gov/
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1.3 Dark matter interpretation of the galactic center excess

Profile’s name Profile

Zhao ρ(r) = ρ�

(
R�
r

)γ (rαs +Rα�
rαs + rα

)β − γ
α α = 1 , β = 3 , γ = 1

(in micrOMEGAS [11])

Navarro-Frenk-White ρ(r) = ρ�
rs

r[1+r/rs]2
α = 0.17

Einasto profile ρ(r) = ρ� exp

[
− 2
α

((
r

R�

)α
− 1

)]
α = 0.17

Table 1.1: Mass density profiles for the dark matter in the Galaxy.

close to the speed of light, etc. These are some of the marvels that generate gamma-ray
radiation and the telescope is prepared to see it. One of the searches has been concentrated
in the dwarf spheroidal satellite galaxies (dSphs) of the Milky Way Galaxy, which are one
of the most DM dominated objects known. In general, the Fermi-LAT measures the flux
of gamma-rays and reconstructs the signal as an interpretation of DM annihilation. Until
now, the satellite has not seen a DM signal. However, it has presented upper limits on the
thermal velocity averaged annihilation cross section 〈σv〉 using some combined analysis [12].
One of the principal results for DM self-annihilation are based on the photons created by
the hadronization of the quarks, for instance, after the process DM DM→ qq̄. The previous
fact gives us a strong constraint in the 〈σv〉 and will play an important roll in some of the
analysis in this thesis.

Regarding indirect detection of dark matter, there is currently a puzzle related to the ob-
servation of an excess of gamma-ray with the Fermi-LAT satellite that is one of the topics
addressed in this thesis and for that reason will be briefly described in the next section.

1.3 Dark matter interpretation of the galactic center excess

WIMP particles appear effortlessly in many extensions of the SM that resolve outstanding
theoretical and phenomenological problems which are not necessarily related to the DM puzzle.
In some of these models, WIMPs can be produced in high energy colliders (collider DM searches),
in elastic scatter with nucleons (direct DM searches) or in the annihilation and production of
observable particles in astrophysical environments (indirect DM searches). High-energy photons
in the gamma-ray (γ-ray) frequency constitute the most notable search channel of the latter
category because they can travel almost unperturbed from their sources to the detectors. The
Large Area Telescope on board the Fermi satellite (Fermi-LAT) [13] is the most sensitive γ-ray
detector in the range from 20 MeV to 300 GeV [12].

At the bottom of the gravitational well of the Milky Way Galaxy, the Galactic Center (GC)
is expected to be the region displaying the brightest emission of DM annihilations in the γ-ray
sky [14]. However, there are multitude of non-thermal astrophysical sources in that region that

14



Chapter 1. Physical problems addressed in this thesis

complicate the identification of a tentative DM signal [14]. Observations of the inner few degrees
around the GC with the Fermi-LAT have revealed an excess of γ-rays [15–21]. The spectrum of
the Galactic Center excess (GCE) peaks at about 1-3 GeV and its spatial morphology is spherically
symmetric varying with radius r around the GC as r−2γ with γ ∼ 1.2 which is clearly compatible
with the DM density profile. This emission has been found to extend out in Galactic latitude (b)
up to about |b| . 20◦ [22–25] and its presence appears to be robust with respect to systematic
uncertainties [21, 23–28].

Fig. 1.8 shows the GCE observed for |b| < 2◦ and Galactic longitude |l| < 2◦. This is the
remaining excess after subtracting the Gamma Diffuse Emission of gamma rays (GDE) produced
by cosmic rays that generate pions π0 in collisions with the interstellar gas that latter decay and
produce photons, by cosmic electrons which produce photons by bremsstrahlung emission and
by photons accelerated by Inverse Compton scattering (ICS). Fig. 1.9 shows the complete signal
observed of the Galaxy for |b| > 2◦ and the remaining GCE after cleaning the map using the best
GDE models.

Figure 1.8: Residual map or GCE signal for |b, l| < 2◦. The counts were summed over the energy
range 300 MeV-10 GeV. The map spans a 7◦× 7◦ region of the sky centred in the Sgr A∗ position
with a pixel size of 0.1◦ × 0.1◦. Taken from [21].

There is an ongoing and intense debate as to what the origin of this signal is. A tentative
explanation is an unresolved population of ∼ 1000 millisecond pulsars (MSPs) [19,21,26,29–36] or
young pulsars [36,37]. Nevertheless, some studies [38–43] have pointed out about the difficulties of
reconciling this hypothesis with the GCE extending out as far as ∼ 10◦ from the GC. On the other
hand, recent works claim that the GCE is not smooth [44, 45], and if confirmed, this would lend
support to the MSPs alternative. Another scenario put forward is a series of energetic cosmic-ray
injections in the GC [46, 47]. However, if the injected particles are mainly protons, it has been
shown [48] that this scenario is incompatible with the spatial morphology of the GCE in the inner
∼ 2◦ of the Galaxy. In case the burst events contain protons as well as leptons, Ref [49] finds
suitable models that appear fine-tuned.

Despite these astrophysical uncertainties, a DM interpretation of the GCE cannot be ruled
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1.3 Dark matter interpretation of the galactic center excess

Figure 1.9: Left panels: Counts map a various energies, with the disk cut |b| > 2◦. Right panels:
Residual after sustracting the best Gamma Difuse emition model (GDE). Taken from [24].

out yet [15, 17–21, 23, 26, 35, 50]. In this context, the spatial morphology of the GCE can be
accommodated with a Navarro-Frenk-White (NFW) profile with a mildly contracted cusp of γ ∼
1.2, the measured spectrum implies a WIMP mass in the GeV energy range and an interaction
cross section that coincides with the thermal relic cross section.

A recent study of the GCE [24] selected a target region (|b| > 2◦) that excluded the core of
the GC. Additionally, the systematic uncertainties in the Galactic diffuse emission were estimated
in a manner that made the low and high energy tails of the spectrum more uncertain than in
previous analyses [21, 23, 26, 50], which focused on a smaller region containing the inner ∼ 2◦ of
the GC. Although it is possible that the greater degree of uncertainty in the tails found by [24] is
due to an intricate overlap of the GCE with the Fermi Bubbles [51, 52], it is interesting that this
uncertainty also allows much more freedom for DM models fitting the GCE [53–105].

Significant effort has been made in exploring the properties of DM models that can explain
the GCE while being consistent with other indirect, direct and collider constraints [53–105]. Of
great interest are the properties of minimal supersymmetric extensions of the SM (MSSM) [85,
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94, 100, 102–105] that can fit the GCE. When these extensions are studied in light of the GCE
extracted from the region |b| > 2◦ of the GC, the required neutralino annihilation rates to mainly
the W+W− and t̄t channels are found to comply with the LEP or LHC bounds on sfermion
masses. However, we do not restrict ourselves to supersymmetric models. Instead, we take the
approach of studying a simplified DM model in which the DM candidate is a mixture, generated
by the interaction with the Higgs boson, of a SM fermion singlet and the neutral components of an
electroweak doublet vector-like fermion [106–109]. This model, also known as the singlet−doublet
fermion DM (SDFDM) model, is one of the simplest UV realizations of the fermion Higgs portal
[110] with the SM Higgs boson as the mediator between the visible and dark sectors. In fact, the
dark sector of the SDFDM model (along with the stabilizing discrete symmetry) is part of the
minimal setup expected when the SM is extended by new physics which is to some extent related
to lepton and baryon number conservation [111,112]. While being free of many theoretical biases,
this model allows us to extract maximal phenomenological information from a framework that is
a good representation of the WIMP paradigm [106–109,113–118].Accordingly, the SDFDM model
is set to become one of the models to be implemented in future searches for DM particles at the
LHC [118] and a future 100 TeV hadron collider [112,119].

To understand how neutrino masses will be incorporated in a SDFDM model, it is important
to explain briefly the relation between the dark matter and neutrino masses, more specifically,
how to generated neutrino masses from a dark sector. This relation will be described in the next
section.

1.4 Relations between dark matter and the non-zero neutrino
masses

Neutrino physics in a nutshell

Although, neutrinos in the SM are massless, current neutrino oscillation data had established
the non-zero value of neutrino masses, which is a clear indication of new physics beyond the SM.
These neutrino data can be described within the framework of a 3× 3 mixing matrix U between
the flavor eigenstates νl = (νe, νµ, ντ ) and the mass eigenstates νi = (ν1, ν2, ν3), such that

|νl〉 =
∑
i

U∗li|νi〉 . (1.4)

In the case of Dirac neutrinos, the mixing matrix U depends on three mixing angles θ12, θ13, θ23

and one CP-violating phase δ, while in the case of Majorana neutrinos there are two additional
phases [120]. In general, it is convenient to use the parametrization that coincides with the quark
mixing matrix given by

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ,

where cij = cos θij and sij = sin θij .
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1.4 Relations between dark matter and the non-zero neutrino masses

In the neutrino oscillation theory, the probability of the transformation of a flavor eigenstates
neutrino νa into another one νb in a time t is given by [120]

P (νa → νb; t) = |Ubje−iEjtU∗aj |2 , (1.5)

where the energy Ei and the momenta p for the eigenstate of mass mi are related by

Ei =
√
p2 +m2

i ≈ p+
m2
i

2p
. (1.6)

There are some important limit cases in which this probability is computed. For instance, when
the neutrino mass squared differences ∆m2

ij = m2
i −m2

j have a hierarchy

|∆m2
21| � |∆m2

31| ' |∆m2
32| ⇒

{
m1 � (.)m2 � m3 Normal hierarchy NH
m3 � m1 ≈ m2 Inverted hierarchy IH .

(1.7)

These hierarchies are good motivated by the fact that the solar neutrino data indicates ∆m2
21 =

∆m2
� ∼ 10−5 eV2 for the solution of the solar neutrino problem through the matter neutrino

oscillations (∆m2
� ∼ 10−10 eV2 through the vacuum oscillations). Whereas the explanation of the

atmospheric neutrino oscillations experiments requires ∆m2
32 = ∆m2

atm ∼ 10−3 eV2 much larger
than ∆m2

�. For a complete list of neutrino oscillation parameters see Table 1.2.

parameter best fit ± 1σ 2σ range 3σ range
∆m2

21 [10−5eV2] 7.60+0.19
−0.18 7.26–7.99 7.11–8.18

|∆m2
31| [10−3eV2] (NH) 2.48+0.05

−0.07 2.35–2.59 2.30–2.65
|∆m2

31| [10−3eV2] (IH) 2.38+0.05
−0.06 2.26–2.48 2.20–2.54

sin2 θ12/10−1 3.23±0.16 2.92–3.57 2.78–3.75
θ12 34.6±1.0 32.7–36.7 31.8–37.8

sin2 θ23/10−1 (NH) 5.67+0.32
−1.28 4.13–6.23 3.92 – 6.43

θ23 48.9+1.9
−7.4 40.0–52.1 38.8–53.3

sin2 θ23/10−1 (IH) 5.73+0.25
−0.43 4.32–6.21 4.03–6.40

θ23 49.2+1.5
−2.5 41.1–52.0 39.4–53.1

sin2 θ13/10−2 (NH) 2.34±0.20 1.95–2.74 1.77–2.94
θ13 8.8±0.4 8.0–9.5 7.7–9.9
sin2 θ13/10−2 (IH) 2.40±0.19 2.02–2.78 1.83–2.97
θ13 8.9±0.4 8.2–9.6 7.8–9.9

δ/π (NH) 1.34+0.64
−0.38 0.0–2.0 0.0–2.0

δ/π (IH) 1.48+0.34
−0.32 0.0–0.14 & 0.81-2.0 0.0–2.0

Table 1.2: Neutrino oscillation parameters summary taken from [121]. For ∆m2
31, sin2 θ23,

sin2 θ13, and δ the upper (lower) row corresponds to normal (inverted) neutrino mass hierarchy.

18



Chapter 1. Physical problems addressed in this thesis

How to generate neutrino masses from a dark sector?

In this thesis, it is assumed that the neutrinos of the SM are Majorana particles. In that
case, their so small masses can be understood if there is a new physics beyond the SM as it will
briefly describe in the present section. It have been shown that the lower operator which generates
Majorana neutrino masses is the d = 5 Weinberg operator [122]

L =
1

2
cd=5
αβ

(
LcαH̃

∗
)(

H̃†Lβ

)
+ h.c. , (1.8)

where H =
(
H+, H0

)T is the Higgs doublet, H̃ = iσ2H
∗, Lα = (ναL, eαL)T are the left-handed

lepton doublets of the SM with α the flavor number and cd=5
αβ ∝ 1/Λ is a model dependent

coefficient that characterize the scale of the new physics. All the models where the neutrinos are
Majorana particles are reduced to this operator or a higher dimensional equivalent (d > 5) when
the new physics is integrated out [123].

At tree level, there are three ways to generate this operator. These are known as type-I, type-II
and type-III see-saw mechanisms when the mediator is a singlet fermion N , a triplet scalar ∆ or
a triplet fermion Σ respectively. These three cases are schematically shown in Fig. 1.10.

N

∆

Σ

H
H H H

H H

L L

L L

L L

Figure 1.10: The three realizations of the see-saw mechanism at tree level.

From Eq. (1.8) we can see that the neutrino mass scale is roughly given by mνα ∝ 〈H0〉2/Λ,
where 〈H0〉 is the vacuum expectation value of the SM Higgs boson. Notice that in order to have
small neutrino masses the Λ points to the scale of a grand unified theory (GUT).

On the other hand, at one-loop level, when the neutrino masses are generated radiatively, one
additional suppression comes from the loop. In this case, the new physics and consequently the
dark sector could be at the electroweak scale (EW) and the mechanism could be tested with the
current direct, indirect and colliders experiments. This realization of the d = 5 Weinberg operator
is diagrammatically shown in Fig. 1.11. For a complete diagrammatically and systematic study
of the d = 5 Weinberg operator at one-loop level see the Ref. [123]. In particular, in this thesis,
one specific realization of a well-motivated DM model is studied which will be described in the
next chapter.

As a final comment and motivation, it is important to keep in mind that at one-loop level, the
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1.4 Relations between dark matter and the non-zero neutrino masses

?

H H

L L

Figure 1.11: Schematic realization of the radiative see-saw mechanism at one-loop level. The new
dark sector and consequently the DM particle is circling in the loop.

neutrino masses are approximately given by

mν ∝
〈H0〉2

Λ
×
( ε

16π2

)
, (1.9)

where ε expresses symbolically the loop suppression. Therefore, the small neutrino masses are
explained by the loop suppression and by the scale of the new physics. See, for example, the
see-saw radiative model described in [124].
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Chapter 2

Introduction to the singlet-doublet fermion DM model

The singlet-doublet fermion dark matter model (SDFDM) is introduced in this chapter. Its
features are described in detail focusing in the contributions to the electroweak precision

tests parameters, the Higgs and the Z invisible decays, and its prospects for direct and indirect
detection of dark matter. Also, it is described the implementation of this model and how the dark
matter observables are computed using some high energy tools. At the end, it is shown how to
enlarge the model with new reals scalar singlets in order to have radiative massive neutrinos.

2.1 The SDFDM model

The SDFDM model has been previously studied in [108, 109, 113, 115, 116, 118]. The particle
content of the model consists of two SU(2)L-doublets of Weyl fermions R̃u, Rd with opposite
hypercharges and one singlet Weyl fermion N of zero hypercharge. All of them are odd under
one imposed Z2 symmetry, under which the SM particles are even. The new particle content is
summarized in Table 2.1. The most general Z2-invariant Lagrangian is given by

L =LSM +
[
LKin +MDεabR

a
dR̃

b
u − 1

2MNNN − λd εabHaRbdN − λuεabH̃aR̃buN + h.c
]
, (2.1)

where

Rd =

(
ψ0
L

ψ−L

)
R̃u =

(
−
(
ψ−R
)†(

ψ0
R

)†
)
, (2.2)

and H = 1/
√

2
(
−iG+ h+ v + iG0

)T
is the SM Higgs doublet with H̃ = iσ2H

∗.

In general, this model has four complex parameters (−MD,MN , λu, λd) of which three can be
chosen reals with a redefinition of the fermion fields N , Rd and R̃u. Therefore, in this work the
three parameters −MD, MN , and λu are chosen to be reals and positives. The last parameter λd

Symbol (SU(2)L, U(1)Y ) Z2 Spin
N (1, 0) − 1/2
R̃u, (2,+1/2) − 1/2
Rd (2,−1/2) − 1/2

Table 2.1: New Z2-odd Weyl fermions in the SDFDM model.
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2.1 The SDFDM model

can be complex, but it was chosen real in order to avoid CP violation [115].

Expanding the Lagrangian (2.1) is obtained

L ⊃LKin +MD(R1
dR̃

2
u −R2

dR̃
1
u)− 1

2MNNN − λd(H1R2
d −H2R1

d)N − λu(H̃1R2
u − H̃2R1

u)N + h.c

=LKin +MD(ψ0
Lψ

0
R
†

+ ψ−Lψ
−
R
†
)− 1

2MNNN +
λd(h+ v)√

2
ψ0
LN −

λu(h+ v)√
2

ψ0
R
†
N + h.c

=LKin +

[
MDψ

0
Lψ

0
R
† − 1

2MNNN +
λdv√

2
ψ0
LN −

λuv√
2
ψ0
R
†
N

]
+MDψ

−
Lψ
−
R
†

+
h√
2

(
λdψ

0
LN − λuψ0

R
†
N
)

+ h.c. (2.3)

Therefore, the Z2-odd fermion spectrum in this model is composed of a charged Dirac fermion
X± = (ψ±L , ψ

±
R)T with a tree level mass mX± = −MD, and three Majorana fermions X0

i (i =

1, 2, 3) that arise from the mixture between the two neutral parts of the SU(2)L doublets and the
singlet fermion, i.e. between ψ0

L, ψ
0
R
† and N . This spectrum will be discussed in the next section.

2.1.1 Neutral mass spectra

Defining the fermion basis through the vector

Ξ0 =
(
N R1

d R̃2
u

)T
=
(
N ψ0

L ψ0†
R

)T
, (2.4)

the mass terms in the Lagrangian (2.3) can be written as

LΞ =

[
MDψ

0
Lψ

0
R
† − 1

2MNNN +
λdv√

2
ψ0
LN −

λuv√
2
ψ0
R
†
N

]
+ h.c

=− 1

2

[
MNNN −MD(ψ0

Lψ
0
R
†

+ ψ0
R
†
ψ0
L)− λdv√

2
(ψ0

LN +Nψ0
L) +

λuv√
2

(ψ0
R
†
N +Nψ0

R
†
)

]
+ h.c

=− 1

2
Ξ0 TMχΞ0 + h.c , (2.5)

where

Mχ =


MN −λdv√

2

λuv√
2

−λdv√
2

0 −MD

λuv√
2

−MD 0

 . (2.6)

By defining

mλ =
λv√

2
, λ =

√
λ2
u + λ2

d , tanβ =
λu
λd

, (2.7)
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Chapter 2. Introduction to the singlet-doublet fermion DM model

the neutral fermion mass matrix is given by

Mχ =

 MN −mλ cosβ mλ sinβ

−mλ cosβ 0 −MD

mλ sinβ −MD 0

 , (2.8)

which follow the same convention of the bino-higgsino sector in the neutralino mass matrix of
the minimal supersymmetric standard model (MSSM) [125]. This convention facilitates the com-
parison between the present study and previous analysis regarding the bino-higgsino DM limit of
the MSSM. Such a limiting scenario occurs in the MSSM when the winos are decoupled from the
spectrum and is accommodated within the SDFDM model when mλ = mZ sin θW (λ = g′/

√
2).

Neutral mass eigenstates

In order to get the physics eigenstates, this mass matrix needs to be diagonalized, in such a
way that the fermion mass eigenstates X = (χ0

1, χ
0
2, χ

0
3)T are obtained through the rotation matrix

N1 as

Ξ0 =

 N

ψ0
L

(ψ0
R)†

 = N

χ
0
1

χ0
2

χ0
3

 = NX , (2.9)

such that

NTMχN = Mχ
diag , (2.10)

with Mχ
diag = Diag(mχ

1 ,m
χ
2 ,m

χ
3 ) and mχ

n being the corresponding physical masses (not mass
ordering is implied). Even more, CP invariance is assumed and therefore N can be chosen real.
By using the neutral Lagrangian (2.5) and the Eq. (2.9) for the rotation, it is possible to get the
following expressions for the masses

mχ
1 =1

2MNN
2
11 −MDN21N31 −

λdv√
2
N11N21 +

λuv√
2
N11N31 (2.11)

mχ
2 =1

2MNN
2
12 −MDN22N32 −

λdv√
2
N12N22 +

λuv√
2
N12N32 (2.12)

mχ
3 =1

2MNN
2
13 −MDN23N33 −

λdv√
2
N13N23 +

λuv√
2
N13N33 . (2.13)

The analytical diagonalization of the neutral fermion mass matrix is carried out in Appendix A.1.
It is useful and convenient in some analysis to have approximate expressions in the limit of small
fermion mixing (mλ � MD,MN ). For instance, expanding the analytical expressions for the

1In [126] was used U instead N. The equivalence is N = UT .
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2.1 The SDFDM model

eigensystem of Eq. (2.10) given in Appendix A.1 up to order m2
λ, the fermion masses are given by

mχ
1 =MN +

MD sin (2β) +MN

M2
N −M2

D

m2
λ +O

(
m4
λ

)
mχ

2 =MD +
sin(2β) + 1

2 (MD −MN )
m2
λ +O

(
m4
λ

)
mχ

3 =−MD +
sin(2β)− 1

2 (MD +MN )
m2
λ +O

(
m4
λ

)
. (2.14)

Approximate expressions for the mixing matrix are also given in the Appendix A.1.

2.1.2 The interaction Lagrangian

According to the Lagrangian Eq. (2.3), the interaction terms, and the free-fermion Lagrangian
are given by

L ⊃LKin −
h√
2

(
−λdψ0

LN + λuψ
0
R
†
N
)

+ h.c

=
i

2

(
N †σµ∂µN +R†dσ

µDµRd + R̃†uσ
µDµR̃u

)
− h√

2

(
−λdψ0

LN + λuψ
0
R
†
N + h.c

)
, (2.15)

where Dµ is the SM covariant derivative.
Although, this Lagrangian is written in terms of Weyl spinors, in the Appendix A.2 the

Majorana spinors X0
i and the Dirac spinor X± are constructed as

X0
i =

(
(χ0
i )α

(χ0†
i )α̇

)
=

(
Nji Ξ

0
j

N †ji Ξ
†0
j

)
X± =

(
χ±α
χ∓
†α̇

)
=

(
ψ±L
ψ∓R
†

)
, (2.16)

and it is shown that the interaction Lagrangian in terms of four-component spinors is given by

LInt =− g√
2

(
X̄− /W (N2iPL −N3iPR)X0

i + h.c
)

+
g

4 cos θ
X̄0
i /Z (N2iN2j −N3iN3j) γ

5X0
j

+g

(
2 cos2 θW − 1

2 cos θW

)
X̄− /ZX− − eX̄− /AX− − 1√

2
hX̄0

i (−λdN2iN1j + λuN3iN1j)X
0
j . (2.17)

In particular, the interaction of the DM particle X0
i with the W , Z and h SM gauge boson is

given by

LχInt = −X̄− /WcWXXiX
0
i − cZXiXjX̄0

i /Zγ
5X0

j − chXiXjhX̄0
iX

0
j , (2.18)

where

cWXXi =
g√
2

(N2iPL −N3iPR) (2.19)

cZXiXj =
g

4 cos θW
(N3iN3j −N2iN2j) (2.20)

chXiXj =
1√
2

(−λdN2iN1j + λuN3iN1j) , (2.21)

which it is in agreement with the Ref. [118].
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Chapter 2. Introduction to the singlet-doublet fermion DM model

As is usually done, we denote the lightest stable particle in our model by χ0 2, whose couplings
with the Z and h gauge bosons can explicitly written as [116]

cZχ0χ0 = −
mZλ

2v(m2
χ0 −M2

D) cos 2β

2(m2
χ0 −M2

D)2 + λ2v2
(

2 sin 2βmχ0MD +m2
χ0 +M2

D

) , (2.22)

chχ0χ0 = − (MD sin 2β +mχ0)λ2v

M2
D + λ2v2/2 + 2MN mχ0 − 3m2

χ0

. (2.23)

2.2 Invisible decays

This model has a new contribution to the Higgs and Z gauge bosons invisible decay fraction.
Those are given by

Γ(h→ χ0χ0) =
mh

4π

(
1−

4m2
χ0

m2
h

)3/2

|chχ0χ0 |2 (2.24)

and

Γ(Z → χ0χ0) =
mZ

6π

(
1−

4m2
χ0

m2
Z

)3/2

|cZχ0χ0 |2 . (2.25)

Therefore, in order to do a good and viable study in this model, it is necessary to restrict the
parameter space to all the points that have a BR(h → χ0χ0) < 0.19 to 2σ in accord with the
LCH an ILC prospects [127] and Γ(Z → χ0χ0) . 3 MeV in accord with LEP [128].

2.3 Electroweak precision observables (EWPO)

V V ′
= iΠV V ′(p2) gµν + i∆V V ′ pµpν

Figure 2.1: Gauge boson two-point functions.

The SDFMmodel presents new contributions to the electroweak precision observables (EWPO).
The (V = W,γ, Z) gauge bosons two-point functions shown in Fig. 2.1 are modified by the pres-
ence of the new Z2-odd particles circulating in the loop. It gives a new contribution to the

2Actually, it is the lightest stable Majorana four-component spinor X0
i , which will be denote as χ0 for simplicity.
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Peskin-Takeuchi S, T , U parameters [129], which are defined as

S =
4s2c2

α

(
ΠZZ(m2

Z)−ΠZZ(0)

m2
Z

− c2 − s2

sc

ΠZγ(m2
Z)

m2
Z

− Πγγ(m2
Z)

m2
Z

)
(2.26)

T =
1

α

(
ΠWW (0)

m2
W

− ΠZZ(0)

m2
Z

)
(2.27)

U =
4s2

α

(
Π′WW (0)− c2 Π′ZZ(0)− 2 scΠ′Zγ(0)− s2Π′γγ(0)

)
, (2.28)

with s = sin θW and c = cos θW
3. Actually, the only important parameters are S and T . The U

parameter is not useful in practice because its contribution from most new physics models is very
small. It can be shown that U actually parametrizes the coefficient of a dimension-eight operator,
while S and T can be represented as a dimension-six operator. Something important is that a
charge conjugation symmetry (R̃u ↔ Rd) in the Lagrangian (2.1) is obtained when λu = |λd| and
this causes a vanishing DM coupling with the Z gauge boson (N21 = N31 in the Eq.(A.24)). Even
more, due to this custodial symmetry, the new contribution to the T parameter vanishes for this
particular case.

For the analysis carried out in this work, it has been used the correction ∆S and ∆T reported
in the Ref. [108] 4. Those are given by

∆T =
3∑
i=1

[
(V1i)

2 Ã (M,mi) + (V2i)
2 Ã (M,−mi)

]
−1

2

3∑
i,j=1

(V1iV2j + V2iV1j)
2 Ã (mi,−mj) , (2.29)

∆S =
1

2

3∑
i,j=1

(V1iV2j + V2iV1j)
2 F̃ (mi,−mj)− F̃ (µ, µ) , (2.30)

where
Ã (m1,m2) ≡ 1

2αemv2
Π (0) , (2.31)

F̃ (m1,m2) ≡ 4πΠ
′
(0) , (2.32)

Π(0) =
1

16π2

[
(m1 −m2)2 ln

Λ4

m2
1m

2
2

− 2m1m2

+
2m1m2

(
m2

1 +m2
2

)
−m4

1 −m4
2

m2
1 −m2

2

ln
m2

1

m2
2

]
, (2.33)

3The definition for the Π functions can be found in the Refs. [115] and [108].
4A crosscheck has been done with the Ref. [115].
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Π
′
(0) =

1

24π2

[
− ln

Λ4

m2
1m

2
2

− m1m2

(
3m2

1 − 4m1m2 + 3m2
2

)(
m2

1 −m2
2

)2
+
m6

1 +m6
2 − 3m2

1m
2
2

(
m2

1 +m2
2

)
+ 6m3

1m
3
2(

m2
1 −m2

2

)3 ln
m2

1

m2
2

]
. (2.34)

These expressions are valid for Dirac particles and for Majorana fermions with an extra factor of
two and with Λ the cutoff of the loop integral which disappears at the end of the computation.

To be compatible with the parametrization used in the Eq. (2.6), the next identification was
carry out: M → −MD , µ → −2MN , α = λu+λd

2 , β′ = λu−λd
2 and the Vij coefficients were

obtained after the diagonalization of the matrix

Mχ =

 M 0 −β′v
0 −M −αv
−β′v −αv −2µ

 , (2.35)

which is the neutral fermion mass matrix obtained in the basis used in the Ref. [108].

W± W±

χ±
γ

f f ′ f

χ0
i

.

Figure 2.2: Contribution to the electric dipole moment (EDM) of a fermions f in the SM.

As a final comment, the contributions to the electric dipole moment (EDM) of the particles
in the SM, which is the process shown in Fig. 2.2 happens when the Yukawa couplings λu, λd are
complex numbers. However, this work is not focused on that direction because the couplings were
chosen as real numbers. Those issues were discussed in the Ref. [115].

2.4 The dark matter abundance Ωh2

The DM abundance for the SDFDM model can be computed using the standard analysis for
a cold relic density decoupled in the early Universe. In this picture, the evolution of the number
density of the DM particles nχ is governed by the Boltzmann equation [2]

dnχ
dt

+ 3Hnχ =− 〈σv〉
[
n2
χ − (neqχ )2

]
, (2.36)

where H is the Hubble parameter that characterize the Universe’s expansion, neqχ is the number
density when the DM particles are in equilibrium, i.e. when the DM particles are not decoupled
in the early Universe and 〈σv〉 is the thermal velocity averaged self-annihilation cross section.

The Boltzmann equation can be solved approximately when the temperature dependence of
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Figure 2.3: A DM number density illustration which follows the equilibrium density (neq
χ ) to the

point xf (“freeze-out"). After that it remains constant to today.

the 〈σv〉 is parameterized as

〈σv〉 =σ0 x
−n , (2.37)

where σ0 is the cross section to zero temperature, x = mχ0/T and n = 0 corresponds to the s-wave
contribution, n = 1 to the p-wave, etc.

The idea of the concept of the relic density is shown in Fig. 2.3. In the early Universe the DM
number density nχ is approximately given by neqχ . However, with the expansion of the Universe,
the temperature drops below the mass of the DM particle and the reaction rate Γ(χ0χ0 ↔ SM SM)

gets slower than the expansion of the Universe and the neqχ drops exponentially until a point called
“freeze-out" (xf = mχ0/Tf ). In this point, the reaction is not fast enough to hold the equilibrium
and the DM particle is decoupled of the SM particles and its density remains constant to today.
In general, the Boltzmann equation can be solved before the “freeze-out" when nχ ≈ neqχ and
after that, when neqχ � nχ and neqχ can be neglected. The complete solution is obtained by using
the matching between last two solutions just at the ‘freeze-out" point. Without entering in more
details, this solution is given by [108]

Ωh2 ≈(n+ 1)
xf

g
1/2
∗

0.034 pb
〈σvr〉

, (2.38)

where the variable xf at the “freeze-out" is computed solving the equation

xf + (n+ 1) log xf ≈ log

[
0.038 (n+ 1)

(
g

g
1/2
∗

)
Mpmχ0 σ0

]
, (2.39)

with Mp = 1.22× 1019 GeV the Planck mass.

These expressions were computed and checked using micrOMEGAs 4.1.8 [130]. A good
agreement was obtained for some special cases of the parameter space where the 〈σv〉 is easily
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computed by hand. However, the numerical solution obtained with micrOMEGAs was used
because it takes care of the complete 〈σv〉 when the self-annihilation of DM takes place in all
the possible final channels that will be described later. Even more, micrOMEGAs takes care
of difficult regions of the parameter space, for instance, the process of coannihilations and reso-
nances [131].

2.5 Model’s implementation
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Ωh2 < 0.1199

Br(h→χ0 χ0 )> 0.19

Γ(Z→χ0 χ0 )> 3 MeV
LUX
∆T > 0.2

mχ= mh /2

Figure 2.4: Constraints on the SDFDM model in the low mass region for λ = 1 and tanβ = −20.
Above the black dashed line: region exclude by LUX (σSI). Yellow: region excluded by EWPO.
Green (Blue): region excluded by the Z (h) invisible decay. The magenta dashed line corresponds
to mχ0 = mh/2.

The SDFDM model was implemented in Feynrules 2.3 [132] and a crosscheck was done
using the BSM-Toolbox [133] of SARAH [134, 135]. The first step was to reproduce some of the
known results for this model. For that purpose, a benchmark point was taken in order to check
the implementation. For instance, Fig.8 of the Ref. [116] that shows the behavior of the model
for the specific case of λ = 1 and tanβ = −20. We used the LUX-2013 [136] limits for spin-
independent cross section with nucleons and we assumed that the DM relic density saturates the
Planck measurement Ωh2 = (0.1199± 0.0027) [137] at the 3σ. The results are shown in Fig. 2.4.
There, the region above the black dashed line is excluded by LUX. In the same way, the green
(blue) region is excluded by the Z (H) invisible decay and the yellow region is excluded by the
correction to the EWPO parameters (we disagree with the Ref. [116] by a factor two in the ∆T

computation, that factor takes into account that DM particles are Majorana fermions). Note that
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Figure 2.5: Self-annihilation channels a tree level in the SDFDM model. The u-channels are not
shown. They were generated using FeynArts [138].

the boundary of the region given by the red points reproduces the experimental value of Ωh2,
while the remaining white zones have an overabundance of the DM relic density.

2.6 Indirect detection

At tree level, the interaction between the DM and the SM sector is mediated by the W , Z
and H gauge bosons. In this model, DM particle (χ0) can self-annihilate into f̄f , ZZ, W+W−

and hh final states through s-channel Higgs and Z boson exchange and into ZZ, W+W− states
via t-channel χ0

i and χ± exchange. Annihilation into a mixture of weak gauge bosons Zh is also
possible through the exchange of a χi 6= χ0 in the t-channel or a Z in the s-channel. Those
annihilation channels are shown in Fig. 2.5. We remark in passing that gamma-ray lines γγ and
γZ can also be produced at one-loop level. Of particular importance for indirect detection studies
in this framework is the fact that since DM annihilations into fermion pairs mediated by the Higgs
are p-wave suppressed and there is not s-wave amplitude, the annihilations produced through the
Z exchange are dominant. We note that the later is also helicity suppressed, which implies that
the main annihilation channel is the tt̄ (bb̄) for a dark matter mass above (below) the top mass,
with 〈σv〉 . 10−27 cm3 s−1 for mχ0 < mW [116].

In the case of DM particles going into gauge bosons, only those processes in the t-channel
are relevant because they do not suffer velocity suppression. Such a non-velocity suppression is
also present in s and t channels for the annihilation into Zh. In contrast, processes in which DM
self-annihilates into Higgs bosons are velocity suppressed.
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2.6.1 Scanning and constraints

In order to see the behavior of the DM observables in this model, the parameter space was
scanned considering the following ranges of model parameters

100 < MD/GeV < 1000 , 10 < MN/GeV < 1000 ,

10−4 < λ < 10 , 1 ≤ |tanβ| < 60 . (2.40)

Essentially, we throw darts into this large space, generating several million random model points,
and for each generated point we computed the DM relic density and the direct and indirect DM
observables using micrOMEGAs 4.1.8 [130] through Feynrules 2.3 [132]. Each individual
model is then subjected to a large set of dark matter, precision measurement, and collider con-
straints. In particular, we assume that the DM relic density saturates the Planck measurement
Ωh2 = (0.1199 ± 0.0027) [137] at the 3σ level as we are interested in considering the case where
this model accounts for the majority of DM. The model points are also required to be compatible
with Fermi-LAT 5 constraints coming from dwarf spheroidal galaxies [12], as well as LUX [136],
IceCube [139], PICO-2L [140] and PICO-60 [141] limits for spin-independent and spin-dependent
detection studies. Since the SDFM model presents new contributions to the EW precision observ-
ables (EWPO) as was described in the section 2.3, we impose the condition that ∆T < 0.2 given
that the contribution to S is always negligible [116]. Finally, the limit obtained from searches of
charged vector-like particles by LEP [128] has been taken into account by imposing the condition
MD > 100 GeV in Eq. (2.40).

In Fig. 2.6, it is shown the total velocity average annihilation cross-section 〈σv〉 for the DM
self-annihilation into SM particles including two and three final states. Also, it is shown the
current and strongest Fermi Large Area Telescope (LAT) constraints of DM self-annihilation into
bb̄ quarks and W+W− gauge bosons in the dwarf spheroidal galaxies (dSph). It can be seen that
indirect detection does not put strong constraints on the parameter space of the SDFDM model.
All the models are alive with the current indirect detection constraints.

2.7 Direct detection

Regarding direct detection, the Higgs h (Z gauge bosson) exchanging leads to spin-independent
(spin-dependent) DM nucleon scattering (see Fig. 2.7). From Eq. (2.22) is clear that the spin-
dependent (SD) cross section vanishes for cos 2β = 0 or |mχ0 | = MD, implying for both cases that
tanβ = ±1. In the same vein, from Eq. (2.23) the spin-independent (SI) cross section vanishes
(i.e. a blind spot as discussed by Ref. [114]) for sin 2β = −mχ0/MD, which using the characteristic
equation of the Appendix (A.1) leads to mχ0 = MN ,MD. Note that σSI = 0 if tanβ < 0 and
only if MN > MD, both σSI and σSD can be zero simultaneously.

2.7.1 The spin-independent cross section σSI

The DM scattering with the nucleons N (protons and neutrons) is an effective interaction
because nucleons are made of quarks. When the mediator is the Higgs gauge boson, the scalar

5Fermi Large Area Telescope: http://fermi.gsfc.nasa.gov/.
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Figure 2.6: Velocity average annihilation cross-section 〈σv〉, generated randomly for a big sam-
ple of the parameters of the SDFDM model that take into account the correct relic density (see
section 2.6.1). The green (black) line is the current constraint of indirect detection for DM self-
annihilation into bb̄ (W+W−) in the dwarf spheroidal galaxies (dSph) at 95% C.L [12]. The
gray line represents the prediction of the WIMP paradigm where the 〈σv〉 reach the thermal value
10−26cm3s−1.
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Figure 2.7: DM inelastic scattering with the quarks that compose the nucleons (protons and neu-
trons).

interaction is spin-independent. In order to compute this scattering is reasonable to think in the
next effective interaction

LSM ⊃
∑
q

mq

v
hq̄q =|N〉〈N |

∑
q

mq

v
hq̄q|N〉〈N | = h

v
〈N |

∑
q

mq q̄q|N〉|N〉〈N |

=
mNfN
v

hN̄N , (2.41)

where 〈N |∑qmq q̄q|N〉 = mNfN is a QCD form factor, which is experimentally determined [130] [118].
Using this Lagrangian, it is possible to compute the spin-independent cross section (see the Ap-
pendix A.3). It is given by

σSI =
m2
r

π

(
chX1X1

vm2
h

)2

f2
Nm

2
N , (2.42)
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wheremr =
mNmχ0

(mN +mχ0)
is the reduced mass of the dark matter-nucleon system (mN ≈ 0.939GeV

for the neutron and mN ≈ 0.938GeV for the proton).
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Figure 2.8: Spin-independent cross section in the SDFDM model in comparison to current and
future direct detection limits. The panel displays current limits from the LUX experiment (black
solid line) [142] and the expected limits from the forthcoming XENON-1T and LZ [143] experiments
(blue dashed and green dot-dashed lines).

In Fig. 2.8, it is shown the spin-independent cross sections computed for a big sample of the
parameters of the SDFDM model in Eq. (2.40). Also, it is shown the limits from the LUX-2013
experiment (black solid line) [142] and the expected limits from the forthcoming XENON-1T
and LZ [143] experiments (blue dashed and green dot-dashed lines). It can be seen that direct
detection rules out some parameters space of this model. However, some of the models are alive
with the current direct detection constraints.

2.7.2 The spin-dependent cross section σSD

As it was said before, when the mediator in the scattering of the DM with nucleons N (protons
and neutrons) is the Z gauge boson, the interaction is spin-dependent. In Fig. 2.9, it is shown the
spin-dependent cross sections computed with micrOMEGAs 4.1.8 [130] through Feynrules

2.3 [132]. Each individual model (point) saturates the Planck measurement value for the relic
density Ωh2 = (0.1199± 0.0027) [137] at 3σ level. In Fig. 2.9, it is also shown the PICO-2L [140]
(green light solid line) and PICO-60 [141] (magenta solid line) limits, as well as the LZ sensitivity
(green dashed line). The most recent constraints from LUX-2016 [9] (red and blue solid lines) are
also overlaid. It can be seen that direct detection rules out some parameter space of this model.
However, some of the models are alive with the current direct detection constraints, but in the
future, the LZ experiment will rule out or confirm this model.

To finish this chapter, in the next section is described how to enlarge the SDFDM model in
order to have masses for the active neutrinos of the SM.
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Figure 2.9: Spin-dependent cross section in the SDFDM model in comparison to current and
future direct detection limits. The panel shows the PICO-2L [140] (green light solid line) and
PICO-60 [141] (magenta solid line) limits, as well as the LZ sensitivity (green dashed line). The
most recent constraints from LUX [9] (red and blue solid lines) are also overlaid.

2.8 Neutrino masses in the SDFDM model

In view of the lack of signals of new physics in strong production at the LHC, there is a growing
interest in simplified models where the production of new particles is only through electroweak
processes, with lesser constraints from LHC limits. In particular, there are simple SM extensions
with dark matter candidates, such as the singlet scalar dark matter (SSDM) model [144–146],
or the singlet-doublet fermion dark matter (SDFDM) model [106–109, 113, 114]. In this kind of
models, the prospects for signals at LHC are in general limited because of the softness of final
SM particles coming from the small charged to neutral mass gaps of the new particles, which is
usually required to obtain the proper relic density. In this sense, the addition of new particles
motivated for example by neutrino physics could open new detection possibilities, either through
new decay channels or additional mixings which increase the mass gaps.

On those lines, scotogenic models [124], featuring neutrino masses suppressed by the same
mechanism that stabilizes dark matter, have been thoroughly studied with specific predictions in
almost all the current terrestrial and satellite detector experiments (For a review see for exam-
ple [147]). The simplest models correspond to extensions of the inert doublet model [148, 149]
with extra singlet or triplet fermions. Recently, the full list of 35 scotogenic models with neutrino
masses at one-loop [123, 150] 6, and at most triplet representations of SU(2)L, was presented
in [152] (and partially in [153]). The next to simplest scotogenic model is possibly the one where
the role of the singlet fermions is played by singlet scalars and the role of the scalar inert doublet
is played by a vector-like doublet fermion. One additional singlet fermion is required to generate
neutrino masses at one-loop level. This kind of extension of the singlet dark matter model is

6The general realization of the Weinberg operator at two-loops have been undertaken in [151]
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labeled as the model T13A with α = 0 in [152]. The extra fermion, required in order to have
radiative neutrino masses, can be the singlet in the SDFDM model.

In the simplest scotogenic model [124], singlet fermion dark matter is possible but quite re-
stricted by lepton flavor violation (LFV) [154, 155]. In contrast, in the present model is shown
that the region of the parameter space, corresponding to fermion dark matter, is well below the
present and near future constraints on Br(µ→ eγ).

On the other hand, when the lightest Z2-odd particle (LOP) is one of the scalar singlets, in
the regions of the parameter space compatible with constraints from LFV, the SDFDM model
has promising signals at colliders, thanks to the electroweak production of fermion doublets and
possible large branchings into charged leptons.

The dark matter phenomenology of both the SSDM and SDFDM models has been extensively
studied in the literature and recently revisited in [115]. In this work both models will be joined
and the possible effect of coannihilations with the scalar singlets for fermion dark matter will be
considered. We will see if these coannihilations tend to increase the relic density of dark matter
and if could modify the viable parameter space of the SDFDM model.

2.8.1 The SDFDM model with reals scalars singlets

When the SDFDM model is extended with a set of real scalar singlets Sα of zero hypercharge
and odd under the imposed Z2 symmetry, the most general Z2-invariant Lagrangian is given by

L =LSM +MDεabR
a
dR̃

b
u − 1

2MNNN − hiαεabR̃auLbiSα − λd εabHaRbdN − λuεabH̃aR̃buN + h.c

−
[

1
2

(
M2
S

)
αβ
SαSβ + λSHαβ εabH̃

aHbSαSβ + λSαβγδSαSβSγSδ

]
, (2.43)

where Li are the lepton doublets and H is the SM Higgs.

In the scalar potential, it is assumed that theM2
S matrix has only positive entries and

(
M2
S

)
αβ

+

λSHαβ v
2 = 0 for α 6= β, which means that Sα are mass eigenstates with masses m2

Sα
=
(
M2
S

)
αα

+

λSHαα v
2 and mSα < mSα+1 .

2.8.2 One-loop neutrino masses

In this framework, the new fields N, R̃u, Rd, S do not carry lepton number so that the only
lepton-number violating terms is the one with coupling hiα. The radiative neutrino mass matrix
is obtained using the realization of the Weinberg operator a one-loop how it was pointed out in
Fig.[5] of the Ref. [150] and as one of the topology T1-iii in [123]. The computation of the neutrino
mass matrix can be done in the interaction basis as it is shown on the Appendix A.4. However,
it is more illustrative to show the calculation on the basis of mass eigenstates as follows.

After the EWSB, each entry of the neutrino mass matrix have the three fermion contributions
(n = 1, 2, 3) displayed in Fig. 2.10, each one with divergent parts which must cancel between
them. The neutrino mass matrix in this basis is given by

35



2.8 Neutrino masses in the SDFDM model
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Figure 2.10: Contributions to the neutrino mass matrix.

Mν
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d4k
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3∑
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∫
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�k +mχn(
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χn

) [
(p+ k)2 −m2

Sα

] .
In the limit of p→ 0, we have

Mν
ij =i2

∑
α

hiαhjα
16π2

3∑
n=1

(N3n)2mχn B0

(
0;m2

χn ,m
2
Sα

)
, (2.44)

where B0 is the Passarino Veltman functions given by [156]

B0

(
0;m2

χn ,m
2
Sα

)
=

∫
d4k

iπ2

1(
k2 −m2

χn

) (
k2 −m2

Sα

) =
1

m2
χn −m2

Sα

[
A0

(
m2
χn

)
−A0

(
m2
Sα

)]
(2.45)

with

A0

(
m2
)

=m2

[(
2

ε
− lnπ + γE

)
+ 1− ln

(
m2

µ2

)]
. (2.46)

In order to compute this matrix, two things need to be used. First, the Eq. (2.44), where

3∑
n=1

(N3n)2mχn B0

(
0;m2

χn ,m
2
Sα

)
=

3∑
n=1

(N3n)2mχn

{
1

m2
χn −m2

Sα

[
m2
χn

[
∆ + 1− ln

(
m2
χn/µ

2
)]
−m2

Sα

[
∆ + 1− ln

(
m2
Sα/µ

2
)]]}

=

3∑
n=1

(N3n)2mχn

{
(∆ + 1) +

m2
Sα

ln
(
m2
Sα
/µ2
)
−m2

χn ln
(
m2
χn/µ

2
)

m2
χn −m2

Sα

}

=

3∑
n=1

(N3n)2mχn

{[
∆ + 1 + ln

(
µ2
)]

+
m2
Sα

ln
(
m2
Sα

)
−m2

χn ln
(
m2
χn

)
m2
χn −m2

Sα

}
, (2.47)

and second, the Eq. (2.10), where

NMχ
diagN

T = Mχ ⇒
∑
m

NlmmχmNnm = (Mχ)ln ,⇒
∑
m

N2
3mmχm = (Mχ)33 = 0 . (2.48)
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Finally, using the Eq. (2.47) and Eq. (2.48) the neutrino mass matrix takes the form

Mν
ij =

∑
α

hiαhjα
16π2

3∑
n=1

(N3n)2mχn

[
m2
χn ln

(
m2
χn

)
−m2

Sα
ln
(
m2
Sα

)
m2
χn −m2

Sα

]
. (2.49)
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Chapter 3

Phenomenology of the SDFDM model with real scalars

singlets

This chapter in based in our work published in PhysRevD.92.013005 (2015)
http://dx.doi.org/10.1103/PhysRevD.92.013005

Abstract

When the singlet-doublet fermion dark matter model is extended with additional Z2–odd
real singlet scalars, neutrino masses and mixings can be generated at one-loop level.

In this work, we discuss the salient features arising from the combination of the two resulting
simplified dark matter models. When the Z2-lightest odd particle is a scalar singlet, Br(µ→ eγ)

could be measurable provided that the singlet-doublet fermion mixing is small enough. In this
scenario, also the new decay channels of vector-like fermions into scalars can generate interesting
leptonic plus missing transverse energy signals at the LHC. On the other hand, in the case of
doublet-like fermion dark matter, scalar coannihilations lead to an increase in the relic density
which allows to lower the bound of doublet-like fermion dark matter.

3.1 Neutrino masses

When we extended the SDFDM model with real scalars singlets we were able to get neutrino
masses using the realization of the Weinberg operator as it was described in the section 2.8.2. In
general, is possible to write the neutrino mass matrix (2.49) as

Mν
ij =

∑
α

hiαhjα
16π2

3∑
n=1

(N3n)2mχn f (mSα ,mχn) , (3.1)

=
∑
α

hiαΛαhjα (3.2)

=
(
hΛhT

)
ij
, (3.3)

with f (m1,m2) = (m2
1 lnm2

1 −m2
2 lnm2

2)/(m2
1 −m2

2), Λ = Diag (Λ1,Λ2,Λ3) and

Λα =
1

16π2

3∑
n=1

(N3n)2mχn f (mSα ,mχn) . (3.4)
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3.1 Neutrino masses

As we described in the Appendix B.1, the flavor structure of the neutrino mass matrix Mν
ij ,

given by Eq. (3.3), allows us to express the Yukawa couplings in terms of the neutrino oscillation
observables (ensuring the proper compatibility with them) through the Casas-Ibarra parametriza-
tion introduced in [157,158]. Thus, by using an arbitrary complex orthogonal rotation matrix R,
the Yukawa couplings hiα are given by

hT = D√
Λ−1 RD√mν U† , (3.5)

where D√mν = Diag
(√
mν1,

√
mν2,

√
mν3

)
, D√

Λ−1 = Diag

(√
Λ−1

1 ,
√

Λ−1
2 , · · ·

)
and U is the

PMNS [159] neutrino mixing matrix.

Henceforth, we will consider the case of three scalar singlets, α = 1, 2, 3, where the Yukawa
couplings take the form

hiα =

√
mν1Rα1U

∗
i1 +
√
mν2Rα2U

∗
i2 +
√
mν3Rα3U

∗
i3√

Λα
. (3.6)

In the above equation, the 3×3 matrix R can be cast in terms of three rotation angles θ23, θ13, θ12,
which are assumed to be real. It is worth mentioning that for the case two scalar singlets α = 1, 2

a viable scenario is also possible with the remarks that one massless neutrino is obtained. To fully
exploit the generality of hiα couplings obtained from (3.6), we stick to the case with three scalar
singlets.

In summary, the set of input parameters of the model are the scalar masses mSα , MN , MD, λ,
tanβ, the lightest neutrino mass mν1, the three rotation angles present in R and λSHαβ

1. Without
not loss of generality we assume for the latter to be small λSHαβ . 0.01, except for the case of scalar
dark matter where λSH11 is set to give the proper relic density.

In order to have an approximate expression for Λα in terms of this set of input parameters, it
is possible to use the identity (2.48) to obtain

Λα =
1

16π2

{
N2

31m
χ
1 [f(mSα ,m

χ
1 )− f(mSα ,m

χ
3 )] +N2

32m
χ
2 [f(mSα ,m

χ
2 )− f(mSα ,m

χ
3 )]
}
.

The expression for the matrix elements N2
31 at O

(
m2
λ

)
are given in the Appendix A.1. Since N2

31

and f(mSα ,m
χ
2 ) − f(mSα ,m

χ
3 ) are already O

(
m2
λ

)
, we can use the leading order values for the

other masses and mixings parameters to obtain

Λα ≈
1

16π2

{
N2

31MN [f(mSα ,MN )− f(mSα ,MD)] +
1

2
MD [f(mSα ,m

χ
2 )− f(mSα ,m

χ
3 )]

}
+O

(
m4
λ

)
.

With the last two approximate formula for masses in (2.14), and the N2
31 mixing in (A.8), we have

16π2 Λα
m2
λ

≈
(
MD cosβ +MN sinβ

M2
D −M2

N

)2

MN [f(mSα ,MN )− f(mSα ,MD)]

+
M2
D [MD sin (2β) +MN ](

M2
D −M2

N

) (
M2
D −m2

Sα

)2
{
M2
D −m2

Sα

[
log

(
M2
D

m2
Sα

)
+ 1

]}
+O

(
m2
λ

)
. (3.7)

1The couplings λSαβγδ are irrelevant for phenomenological purposes.
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Figure 3.1: tanβ dependence of (a) Λa and (b) Br(µ→ eγ), for the set of input masses in Eq. (3.8)
with λ = 5× 10−3.

To illustrate the dependence in tanβ of Λα, we consider the following set of input masses (SIM)
compatible with singlet scalar dark matter:

mS1 = 6.0× 101 GeV mS2 =8.00× 102 GeV mS3 =1.500× 103 GeV

mN = 1.00× 102 GeV mD =5.50× 102 GeV . (3.8)

The results for λ = 5× 10−3 are shown in Fig. 3.1(a). For large values of tanβ, the Λα are
positive. However, there are specific values of tanβ for which each Λα goes to zero and turns to
negative values, as illustrated by the red lines in the plot. The specific point with β = π/6 is
depicted by the yellow stars in the figure.

3.2 Lepton flavor violation

The size of the lepton flavor violation (LFV) is controlled by the lepton number violating
couplings hiα. From the approximate expression for Λα found in the Eq. (3.7) and the analysis
of the previous section, we will show that these couplings are inversely related to the Yukawa
coupling strength λ. Since in SDFDM the observed dark matter abundance is typically obtained
for λ & 0.1 [114], the lepton flavor observables are not expected to give better constraints than
the obtained from direct detection experiments. Therefore, we will focus our discussion of LFV
in regions of the parameter space where S1 is the dark matter candidate.

It is well known that LFV processes put severe constraints on the LFV couplings and, in
general, on the model’s parameter space. One of the most restrictive LFV processes is the radiative
muon decay µ→ eγ shown in Fig. 3.2, which in the present model is mediated by same particles
present in the internal lines of the one-loop neutrino mass diagram shown in Fig. 2.10. The
corresponding expression for the branching ratio is computed in the Appendix A.5. It is given by

Br(µ→ eγ) =
3

4

αem
16πG2

F

∣∣∣∣∣∑
α

h1α

F
(
M2
D/m

2
Sα

)
m2
Sα

h∗2α

∣∣∣∣∣
2

, (3.9)
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Figure 3.2: µ→ eγ process generated using FeynArts [138].

where

F (x) =
x3 − 6x2 + 3x+ 2 + 6x lnx

6(x− 1)4
. (3.10)

With the implementation of the model in the BSM-Toolbox [133] of SARAH [134, 135], we have
crosschecked the one-loop results for both neutrino masses and Br(µ → eγ). Moreover, with
the SARAH FlavorKit [160], we have also checked that the most restrictive lepton flavor violating
process in the scan is just Br(µ→ eγ). From Eqs. (3.2) and (3.5), we obtain

Mν
12 =

∑
α

h1αΛαh2α =
[
U∗Mν

diagU
†
]

12
. (3.11)

Comparing this result with the corresponding combination of couplings in the expression for
Br(µ → eγ) in Eq. (3.9), we expect that for a set of fixed input masses Br(µ → eγ) turns out
to be inversely proportional to Λ2

α. This is illustrated in Fig. 3.1(b) for λ = 5× 10−3, where the
scatter plot of Br(µ → eγ) is shown for the same range of tanβ values than in Fig. 3.1(a). In
such a case, once hiα are obtained from the Casas-Ibarra parametrization, the specific hierarchy
of Λα fixes the several contributions to Br(µ → eγ). The dispersion of the points is due to
the 3-σ variation of neutrino oscillation data [121] used in the numerical implementation of the
Casas-Ibarra parametrization, along with the random variation of the parameters of R. The
minimum value of Br(µ→ eγ) around tanβ = 1 corresponds to the maximum value of Λα, while
the maximum values happen at the cancellation points of each Λα. In the subsequent analysis,
and for a fixed SIM and λ, we allow for cancellations only by two orders of magnitude from the
maximum value of each Λα.

The full scan of the input masses up to 2 TeV, with mS1 > 5.3× 101 GeV [115] as the dark
matter candidate,MD > 1.00× 102 GeV to satisfy LEP constraints, and 10−2 ≤ tanβ ≤ 102, give
to arise the dark-gray plus light-gray regions in Fig. 3.3. In particular, the λ variation for the SIM
with β = π/6, denoted by yellow stars in Fig. 3.1(a), is illustrated with the white dots in Fig. 3.3.
The corresponding dashed line is obtained for the best-fit values of the neutrino oscillation data
and R fixed to the identity. The horizontal dotted line in the plot corresponds to the current
experimental bound for Br(µ→ eγ) < 5.7× 10−13 at 90% CL [161]. The upper part of the light-
gray region is restricted by our imposition to avoid too strong cancellation in Λα . We check that
for all the sets of input masses in the random scan, this cancellation region always happens when
tanβ < 1. In this way, points with tanβ > 1 are absent from the light-gray region, as labeled in
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Figure 3.3: Br(µ→ eγ) in terms of the Yukawa coupling strength λ for the SIM in Eq. (3.8) with
β = π/6, and the general scan described in the text.

Fig. 3.3. For the same reason, in the dark-gray region there are not points with Λα � Λβ ∼ Λγ

(α 6= β 6= γ). We can check for example that points with Λ1 � Λ2 < Λ3 are absent inside the
dark-gray region of Fig. 3.3.

The lower part of the dark-gray region is saturated by the values of MD = 2 TeV, and gives
rise to the lower bound λ & 6× 10−5. With our restriction in the cancellation of Λα, points in
the scan with λ . 3× 10−3 can be excluded from the Br(µ→ eγ) limit.

3.3 Collider phenomenology

The LHC phenomenology in the case of the singlet-doublet fermion dark matter was already
analyzed in [115]. They concluded that the recast of the current LHC data is easier to evade,
but the long-run prospects are promising, since the region MN ,mλ �MD could be probed up to
MD . 600− 7.00× 102 GeV for the 14-TeV run of the LHC with 3.000× 103 fb−1.

On the other hand, in the case of the singlet scalar dark matter, the main production processes
associated with the new fermions remain the same, but there are new signals from the mediation,
or presence in the final decay chains, of the new scalars. The most promising possibility is the
dilepton plus missing transverse energy signal coming from the production of charged fermions
decaying into leptons and the lightest scalar. This signal can be important when λ is not too
large, λ . 0.1, and MN & MD. For a fixed set of input parameters, the random phases in
the Casas-Ibarra can be chosen to have all the possibilities in the lepton flavor space associated
with the coupling hi1, with i = e, µ, τ . In view of that, we will focus in the best scenario where
Br(χ± → l± S1) ≈ 1 (l± = e± or µ±). The Feynman diagram for the processes is displayed in
Fig. 3.4.

The mass of the charged Dirac fermion χ±, can be constrained from dilepton plus missing
transverse energy searches at the LHC. In [162], this kind of signals was used by the ATLAS col-
laboration to establish bounds on the slepton masses from the search for pp→ l̃+ l̃− → l+l−χ̃0χ̃0,
where χ̃0 are the neutralinos, and the same exclusion is reported for l = e or µ. Purely left-handed
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sleptons produced and decaying this way, have been excluded up to masses of about 300 GeV at
95% CL, from the data with integrated luminosity of 20.3 fb−1 and the pp collision energy of 8 TeV.
This corresponds to an excluded cross section of 1.4 fb at NLO calculated with PROSPINO [163].

In the present model, the charged fermion field may decay in the mode χ± → e±i S1 which are
proportional to the Yukawa couplings hi1. Therefore, a similar final state as in the slepton pair
production is obtained through the process pp→ χ+χ− → l+l−S1S1, as can be seen in Fig. 3.4.

q̄

q

γ∗/Z∗

χ−

χ+
l+

l−

S0
α

S0
α

Figure 3.4: Feynman diagram for pp→ χ+χ− → l+l−SαSα (Drell-Yan process).

In this case, the excluded cross section of this process can be estimated from:

σ(pp→ l+l−S1S1) = σ(pp→ χ+χ−)× Br(χ± → l±S1)2, (3.12)

where σ(pp→ χ+χ−) is the pair production cross section of charged Dirac fermion, and Br(χ± →
l±S1) is the branching fraction for χ± → l±S1 mode.

The pair production of charged Dirac fermions can be calculated in the pure-higgsino limit of
the minimal supersymmetric standard model. The NLO cross section calculated with PROSPINO

is displayed in Fig. 3.5 as a function of the charged Dirac fermion.
For points in the parameter space where the Casas-Ibarra solution is chosen such that Br(χ± →

l± S1) ≈ 1, and assuming the same efficiency as for the dilepton plus missing transverse energy
signal coming from left-sleptons in Eq. (3.12), the charged Dirac fermions of the present model
can be excluded up to 5.10× 102 GeV, as illustrated in Fig. 3.5.

Note that many points in the scan of Fig. 3.3 with λ . 0.1 and featuring mS1 �MD, could be
excluded by this LHC constraint. However, a detailed analysis of the restriction from the Run I
of the LHC, in the full parameter space of the model, is beyond the scope of this work.

3.4 Coannihilation

In this model, the role of the dark matter particle can be played by either the lightest of the
fermions χLOP or the lightest of the scalars S1. In the latter case, the present model resembles
the singlet scalar DM model [144–146] as long as the other Z2-odd particles do not contribute to
the total annihilation cross section of S1, namely through to the addition of new (co)annihilation
channels. Therefore, by choosing a non-degenerate mass spectrum and small Yukawa couplings
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Figure 3.5: NLO cross section for the charged Dirac fermion pair production at the LHC with
pp collisions at

√
s = 8 TeV. The horizontal dashed line for the excluded cross section of 1.4 fb,

corresponds to the mass about 5.10× 102 GeV illustrated by the vertical dashed line.

(which is in agreement with neutrino masses) the effects of these particles on dark matter can be
neglected. Hence, we expect that the dark matter phenomenology to be similar to that of the
SSDM [164].

On the other hand, regarding the case of fermion DM, the present model includes the singlet
doublet fermion DM model [106–109,113,114]. In such a scenario, when the dark matter candidate
is mainly singlet (doublet), the relic density is in general rather large (small). In particular, a pure
doublet has the proper relic density for MD ∼ 1 TeV [107,114,165] with decreasing values as MD

decreases. Nonetheless, in the present model, we have the additional possibility of coannihilations
between the Z2-odd scalars and fermions. In this work, we explore at what extent coannihilation
with scalars may allow recovering pure-doublet DM regions with MD . 1 TeV and λ . 0.3 while
keeping the proper relic density. Hereafter, we focus in that specific region.

In the simple radiative seesaw model with inert doublet scalar dark matter, the coannihilations
with singlet fermions can enhance rather than reduce the relic density, as shown in [166]. That
work also presented a review of the several models [167–171] where such an enhancement also
occurs. In particular, supersymmetric models where the neutralino is higgsino-like were considered
in [171] and it was shown that slepton coannihilations not only lead to an increase in the relic
density but also to an enhancement in the predicted indirect detection signals. Below, we show
that the singlet scalars can play the role of the sleptons in our generalization of the higgsino-like
dark matter with radiative neutrino masses.

The interactions of the scalars Sα are described by the hiα, λSHαβ terms in Eq. (2.43). It
turns out that Yukawa interactions are suppressed by neutrino masses (hiα . 10−4) and the
same occurs for the interaction with the Higgs boson if we impose λSHαβ . 10−2. In this way, the
coannihilating scalars Sα act as parasite degrees of freedom at freeze-out, leading to an increase
of the singlet-doublet fermion relic density.
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Figure 3.6: Regions consistent with the observed relic density for λ = 0.3 and tanβ = 2. The
solid cyan line corresponds to the observed relic density without coannihilations which were shown
to be compatible with the current direct detection bounds from LUX [136] in [114]. The effect of
the coannihilations with the new scalars is shown for a mass degeneracy of 0.1 to 10% between
the scalars and the DM candidate. The dark-gray region corresponds to coannihilations with one
scalar singlet, while the dark plus light-gray regions correspond to coannihilations with two scalar
singlets.

By following the discussion in [166], the maximum enhancement of the relic density is achieved
when ∆Sα = (mSα −mχ

LOP)/mχ
LOP becomes negligible. Accordingly, one can write

ΩSα

Ω0
≈
(
g0 + gSα

g0

)2

, (3.13)

where ΩSα (Ω0) denotes the relic density with (without) including Sα coannihilations, gSα repre-
sents the total number of internal degrees of freedom related to the scalars participating in the
in the coannihilation process, and g0 is the total number of internal degrees of freedom when
∆Sα � 1. When the DM particle is pure doublet (MD ∼ 1 TeV and MN � MD), the fermion
masses are mχ

1 = MN , m
χ
2,3 ≈ mχ± = MD and therefore g0 = gχ2 + gχ3 + gχ± = 8. Since each

real scalar has one degree of freedom, we have gSα = 1, 2, 3 depending on the number of scalars
coannihilating. Thus, it follows that the maximum enhancement is ΩSα/Ω0 = 1.27, 1.56, 1.89,
respectively. This enhancement results in that, for the present model with doublet-like DM and
λ . 0.3, theMD required to explain the correct relic density lies in the range [0.9, 1.1] TeV instead
of taking a single value as in the SDFDM model. The values inside this range arise due to no
mass-degeneracy between the fermions and scalars. In Fig. 3.6, we show the effect of coannihila-
tions on the relic density 2 of mχ

LOP for a mass degeneracy of 0.1 to 10% between scalar singlets
and the DM candidate and for λ = 0.3 and tanβ = 2. In particular, in the light-gray region,
we plot the coannihilations with two scalars to facilitate the comparison with the results in [171]
for higgsino-like dark matter coannihilating with a right-handed stau (g ≈ 2 in their plots). As
expected, the upper limit in the LOP mass is about 20% smaller with respect to the case without

2The relic density is calculated with the BSM-Toolbox chain: SPheno 3.3.6 [172]-MicrOMEGAs 4.1.7 [130,173].
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coannihilation, and we could expect similar enhancements for indirect DM searches as in [171]
for g ≈ 2. Note that, when MD, MN < 1 TeV, the impact of the Sα coannihilation is reduced
because, in such case, the dark matter particle is a mixture of singlet and doublet (well-tempered
DM [174]), and the non-negligible splitting among the fermion particles χ leads to a non-zero
Boltzmann suppression. We have checked that the same results are obtained when λ . 0.3.

With regard to DM direct detection in the pure-doublet DM scenario discussed above, it is
not restricted by the current LUX [136] bounds as long as tanβ > 0. This is due to the existence
of zones, known as blind spots, where the spin-independent cross section vanishes identically and
they occur only for positive values of tanβ [114]3. In consequence, the recovered pure-doublet
DM regions are still viable in light of the present results of direct searches of dark matter.

3Note that tanβ > 0 corresponds to tan θ < 0 in notation of [114].
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Chapter 4

The Fermi -LAT gamma-ray excess at the galactic center

in the SDFDM model

This chapter in based in our work published in JCAP03(2016)048
doi.org/10.1088/1475-7516/2016/03/048

Abstract

The singlet-doublet fermion dark matter model (SDFDM) provides a good DM candidate as
well as the possibility of generating neutrino masses radiatively. The search and identifica-

tion of DM require the combined effort of both indirect and direct DM detection experiments in
addition to the LHC. Remarkably, an excess of GeV gamma rays from the Galactic Center (GCE)
has been measured with the Fermi Large Area Telescope (LAT) which appears to be robust with
respect to changes in the diffuse galactic background modeling. Although several astrophysical
explanations have been proposed, DM remains a simple and well-motivated alternative. In this
work, we examine the sensitivities of dark matter searches in the SDFDM scenario using Fermi-
LAT, CTA, IceCube/DeepCore, LUX, PICO and LHC with an emphasis on exploring the regions
of the parameter space that can account for the GCE. We find that DM particles present in this
model with masses close to ∼ 99 GeV and ∼ (173 − 190) GeV annihilating predominantly into
the W+W− channel and tt̄ channel respectively, provide an acceptable fit to the GCE while being
consistent with different current experimental bounds. We also find that much of the obtained
parameter space can be ruled out by future direct search experiments like LZ and XENON-1T,
in the case of null results by these detectors. Interestingly, we show that the most recent data by
LUX is starting to probe the best fit region in the SDFDM model.

4.1 The Galactic Center excess in a nutshell

As we described in the section 1.3, WIMP particles can self-annihilate and for differents mecha-
nisms (one-loop, hadronization) produce High-energy photons in the gamma-ray (γ-ray) frequency.
Those are the most notable searches channel because they can travel almost unperturbed from
their sources to the detectors like the Large Area Telescope on board the Fermi satellite (Fermi-
LAT) [13], which is the most sensitive γ-ray detector in the few GeVs energy range.

The Galactic Center (GC) of the Milky Way Galaxy is expected to be the region displaying
the brightest emission of DM annihilations in the γ-ray sky [14]. However, a multitude of non-
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4.2 Good self-annihilation channels in the high region of the SDFDM model

thermal astrophysical sources present in that region complicates the identification of a tentative
DM signal [14]. With all this in mind, observations of the inner few degrees around the GC with
the Fermi-LAT have revealed an excess of γ-rays [15–21]. The spectrum of the Galactic Center
excess (GCE) peaks at about 1-3 GeV and its spatial morphology is spherically symmetric varying
with radius r around the GC as r−2γ with γ ∼ 1.2, which is clearly compatible with the DM density
profile. This emission has been found to extend out in Galactic latitude (b) up to about |b| . 20◦

[22–25] and its presence appears to be robust with respect to systematic uncertainties [21,23–28].
The spatial morphology of the GCE can be accommodated with a Navarro-Frenk-White (NFW)
profile with a mildly contracted cusp of γ ∼ 1.2, the measured spectrum implies a WIMP mass in
the GeV energy range and an interaction cross section that coincides with the thermal relic cross
section.

A recent study of the GCE [24] selected a target region (|b| > 2◦) that excluded the core of
the GC. Additionally, the systematic uncertainties in the Galactic diffuse emission were estimated
in a manner that made the low and high energy tails of the spectrum more uncertain than in
previous analyses [21, 23, 26, 50], which focused on a smaller region containing the inner ∼ 2◦ of
the GC. Although it is possible that the greater degree of uncertainty in the tails found by [24] is
due to an intricate overlap of the GCE with the Fermi Bubbles [51, 52], it is interesting that this
uncertainty also allows much more freedom for DM models fitting the GCE.

In this chapter, we examine the coverage of WIMP parameter space in the SDFDM model
by using mainly indirect and direct DM search techniques in light of the recent detection of the
GCE. We show the set of parameters in the SDFDM model that are compatible with the GCE
while being consistent with current experimental bounds. Following the same methods explained
in Ref. [175] we compute the expected limits in the annihilation cross-section by the Cherenkov
Telescope Array (CTA) and find that observation toward the GC by this instrument will not be
able to confirm this model as an explanation of the GCE. However, we find that the viable models
can be ruled out by future direct search experiments such as LZ and XENON-1T, in the case
of null results by these detectors. Interestingly, we show that the most recent data by LUX is
starting to probe the best fit region in the SDFDM model.

4.2 Good self-annihilation channels in the high region of the SDFDM
model

As it was explained in the section 2.6, in the SDFDM model DM particles (χ0) can self-
annihilate into f̄f , ZZ,W+W− and hh final states through s-channel Higgs and Z boson exchange
and into ZZ, W+W− states via t-channel χ0

i and χ± exchange. Annihilations into a mixture of
weak gauge bosons Zh are also possible through the exchange of a χi 6= χ0 in the t-channel or a Z
in the s-channel. We remark that gamma-ray lines γγ and γZ can also be produced at one-loop
level. However, the velocity averaged annihilation cross section 〈σv〉 of the SDFDM model we
have three principal features for indirect detection. First, at low energy the SDFDM model does
not exhibit high values for the 〈σv〉 as it is shown in the left part of Fig. 4.1, second, at the higher
order in scattering theory, the loop suppression leads to small values of the corresponding thermal
cross sections [116], and third, for DM masses bigger than mW , the 〈σv〉 exhibit high values as
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it is shown in the right part of Fig. 4.1. This third feature was one of the prime motivations of
the present study. It is clearly shown that the principals channels in the high mass region are the
DM self-annihilation into W+W−, ZZ, tt̄ and Zh.
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Figure 4.1: Left: 〈σv〉 generated randomly for a big sample of the parameters of the SDFDM model
(see section 2.6.1). The green (black) line is the current constraint of indirect detection for DM
annihilation into bb̄ (W+W−) in the dwarf spheroidal galaxies (dSph) [12]. The gray line repre-
sent the prediction of the WIMP paradigm where the 〈σv〉 reach the thermal value 10−26cm3s−1.
Right: Specific region where the 〈σv〉 reaches the thermal value and the specific channels of DM
annihilation.

4.3 Gamma-rays from the Galactic Center

The Galactic γ-ray intensity Φ(Eγ , b, l) produced in self-annihilations of DM particles, where
b and l are the Galactic latitude and longitude respectively, can be obtained from the following
relation [176–178]

Φ(Eγ , b, l) =
1

2

〈σv〉
4πmχ0

∑
f

dNf

dEγ
Bf × J(b, l), (4.1)

which is the product of a term that depends solely on the inherent properties of the DM particle
and an astrophysical factor J(b, l) accounting for the amount of DM in the line of sight. The
former is given in terms of the velocity averaged annihilation cross-section 〈σv〉, the differential
γ-ray multiplicity per annihilation dNf/dEγ , the DM mass mχ0 and the branching ratio Bf where
f denotes the final state particles resulting from the annihilation. The astrophysical factor can
be drawn as [177,178]

J(b, l) =

∫ ∞
0

ds ρ

(√
R2
� − 2sR� cos(b) cos(l) + s2

)2

, (4.2)

where the DM density-square is integrated along the line-of-sight s and R� = 8.25 kpc is the
distance from the solar system to the GC.

The DM halo density ρ(r) is determined by N-body cosmological simulations, with recent
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studies preferring a generalized NFW profile [179] of the form

ρ(r) =
ρs(

r
rs

)γ [
1 +

(
r
rs

)α](β−γ)/α
, (4.3)

where we adopt the scale radius rs = 23.1 kpc and the parameters α = 1, β = 3 as default choices.
Recent analyses of the GCE [21,23,24] find a best fit profile inner slope γ ' 1.2, corresponding to
a mildly contracted DM halo. We normalized the density profile by fixing the local dark matter
ρ(R� = 8.25 kpc) = 0.36 GeV cm−3. This was done by maximizing the likelihood of microlensing
and dynamical data for the chosen profile slope (see Fig.5 of Ref. [180]).

The γ-ray spectra (dNf/dEγ) resulting from χ0 annihilations was generated with the software
package PPPC4DMID [181]. We noticed that for some channels, the interpolation functions
provided by this useful tool are incomplete close to the rest mass thresholds. In such cases, we
instead generated the spectra with the Monte Carlo event generator PYTHIA 8.1 [182] making
sure that these were in agreement with the ones in PPPC4DMID for higher mass ranges.

Because of the quadratic dependence of Eq. 4.1 on the dark matter density, the GC is expected
to be the brightest DM source in the γ-ray sky. However, this region also harbors many γ-ray
compact objects and the Galaxy’s most intense diffuse γ-ray emission produced by the interaction
of cosmic rays with interstellar material. The impact of these uncertainties in the interpretation
of the GCE is currently not very well understood and is the subject of many recent studies.

There are also large uncertainties associated with the predicted signal from DM self-annihilations
in the GC. The DM distribution in the innermost region of our Galaxy is poorly constrained by
numerical DM-only simulations and kinematic measurements of Milky Way constituents. In prin-
ciple, ordinary matter is expected to affect the inner dark matter profile obtained from simulations
at a certain level. The DM density could be either flattened by star burst activity that ejects
baryonic material from the inner region or steepened through adiabatic contraction. Indeed, de-
pending on the assumed DM distribution, different estimates of the expected γ-ray emission can
differ by a factor of up to ∼ 50 (see Ref. [14,183]).

Dwarf spheroidal galaxies (dSph) of the Milky Way are generally thought to be much simpler
targets for indirect DM detection. Although their J(b, l) factor is orders of magnitude lower than
that of the GC, they contain a much cleaner γ-ray background. Reference [12] shows that the null
detection of γ-ray emission from such objects imposes strong constraints on the properties of DM
models. In the next sections, we will discuss the effects of these limits on the DM interpretation
of the GCE.

Here we entertain the possibility that the SDFDM model can account for the GCE while
being consistent with a variety of experimental limits on DM. This is accomplished by following
closely the procedure developed in Ref. [24] and expanded upon in Ref. [103, 104]. In summary,
the γ-ray fluxes obtained from our model scans are compared to the GCE data made available in
Ref. [24]. In that work, the systematic and statistical uncertainties in the Galactic diffuse emission
model were provided in the form of a covariance matrix Σij , which we use here to the full extent
(we refer the reader to the aforementioned article for details on the statistical formalism and the
implementation of the χ2 function). As was done in Refs. [103, 104], we modified the covariance
matrix to also account for theoretical uncertainties in the γ-ray spectra generation. Namely, we
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rewrite Σij as
Σij → Σij + δijd

2
iσ

2
s , (4.4)

where δij is the Kronecker delta, di are the measured photon fluxes and σs = 10% is the adopted
theoretical uncertainty [103,104].

For each of the SDFDM models, we calculate the corresponding χ2 (or p-value) and make sure
that these are consistent with the null Fermi-LAT detection of γ-rays in dSphs. As recommended
in the 3FGL catalog article [184], a given source spectral model is rejected when its associated
p-value is less than 10−3. This is the same as to say that for 24 − 4 degrees of freedom (d.o.f),
model points having a χ2 > 45.37 are considered bad fits to the GCE. In all relevant figures, we
incorporate the 95% upper limits on the value of 〈σv〉 as extracted from Ref. [12].

4.4 Numerical analysis

Having identified the main annihilation channels and established the procedure to calculate
the γ-ray fluxes, we moved to explore the regions of the parameter space that can account for
the Fermi GeV excess. Namely, in this section, we determine the regions that are compatible
with current constraints coming from colliders, electroweak phase transition (EWPT), indirect
and direct DM searches, and then assess them in light of the quality of the fit to the GCE.

For this analysis we used the random general scan described in the section 2.6.1, where each
individual model saturates the Planck measurement Ωh2 = (0.1199±0.0027) [137] at the 3σ level
for the relic density. Even more, all the models are also required to be compatible with Fermi-LAT
constraints coming from dwarf spheroidal galaxies [12], as well as LUX [136], IceCube [139], PICO-
2L [140] and PICO-60 [141] limits for spin-independent and spin-dependent detection studies,
EW precision observables (EWPO) [108], [116] and searches of charged vector-like particles by
LEP [128].

4.4.1 Results

Fig. 4.2 displays the viable models in the planes (MN ,mχ0), (MD,mχ0), (λ,mχ0) and (| tanβ|,
mχ0), along with the corresponding χ2 values obtained from a fit to the GCE. Since the fit tends
to be worse for large values of mχ0 , we only considered DM masses below 500 GeV. Furthermore,
as it was discussed in Sec. 4.2, we only studied models with mχ0 above the W gauge boson mass.
It is convenient to split the results of our scan into two different regions (DM mass ranges): one
in which mχ0 is below the top mass (Region I) and a second one in which mχ0 is larger than the
mass of the top quark (Region II).

The viable models belonging to Region I are characterized for having MN ≈ MD ≈ mχ0 ,
that is, the DM particle is a mixture of singlet and doublet states (well-tempered DM [114,174]).
The non-observation of direct detection signals constrains the Yukawa coupling to small values
(y < 0.2). We note that this limit excludes the MSSM value λ ∼ 0.24. However, | tanβ| is not
constrained to a specific value or range. Regarding Region II, our analysis shows that MN ≈ mχ0

while MD & mχ0 . For y . 0.3 the DM particle should be again well tempered (MD ≈ MN )
whereas for larger values of y we have that MD is larger than MN . In this case, the upper bound
y . 5 comes from the Planck measurement of the DM relic density.
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Figure 4.2: Two-dimensional projection of the χ2 values of our fit, showing each one of the four
free parameters in the SDFDM model (MN , MD, λ and | tanβ|) versus the dark matter mass
(mχ0). In the bottom left panel the black line represents the supersymmetry value λ ∼ 0.24, while
the cyan and magenta vertical lines in all panels represent the W boson mass and the top quark
mass, respectively. Model points able to fit the GCE are those having a χ2 < 45.37 for 24−4 d.o.f.

The viable solutions to the GCE found in Region I feature the following parameters: MN ∼ 105

GeV, MD ∼ 120 GeV, λ ∼ 0.12 and | tanβ| ∼ 9 which generates a DM mass of ∼ 99 GeV with a
χ2 value of 45.3. For these parameters the dark matter annihilates mostly into W+W−. While
for the Region II we found that the viable solutions correspond to the sample:

166 <MN/GeV < 197,

236 <MD/GeV < 988,

0.25 <λ < 1.60,

1.87 < tanβ < 19.6, (4.5)

which leads to a DMmass in the range (173−190) GeV with 〈σv〉tt̄/〈σv〉 ≥ 0.9 and 〈σv〉WW /〈σv〉 ≤
0.1. The fact that χ0χ0 → tt̄ dominates, via s-channel exchange of a Z, is reflected in the required
values for y, because it controls the coupling cZχ0χ0 whenever | tanβ 6= 1|. Note also that, since
tanβ > 0 and tanβ 6= 1, the SI and SD cross sections respectively can not be zero (no blind spot
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Figure 4.3: The present velocity averaged annihilation cross-section as a function of the dark
matter mass in comparison to current indirect detection limits in different channels. The 95%
C.L gamma-ray upper limits from dSphs are extracted from Ref. [12]. The CTA limits correspond
to future 100 hr of γ-rays observations of the GC and assume a generalized NFW profile with an
inner slope of γ = 1.2. The star is the best-fitting model obtained from our scan. Vertical lines
and color code are the same as in Fig. 4.2.

occurs). This means that the hypothesis of the SDFDM model being an explanation of the GCE
can be probed in future experiments (see next section). Concerning the best χ2 obtained, we have
obtained the value 38.0 which is represented by the white star in Fig. 4.3 and Fig. 4.4.

Overall, the two sets of models capable of explaining GCE have DM particles χ0 with masses
around 99 GeV and 173− 190 GeV annihilating into W+W− and tt̄, respectively1. As explained
above, all of our solutions saturate the thermal relic density, making them also consistent with
cosmological constraints on dark matter.

4.4.2 Probing the viable solutions with future observations

The velocity averaged annihilation cross-section as a function of the dark matter mass in
comparison to current indirect detection limits in different channels along with the χ2 values found
in a fit to the GCE are shown in Fig. 4.3. Note that current upper limits from dSphs [12] do not
presently constrain any of the viable points. This is a consequence of the imposed requirement
that models must comply with the observed DM relic density. Once this condition is applied, it
generally restricts the parameter space of the SDFDM model to have a 〈σv〉 less than ∼ 2×10−26

cm3s−1.
Future dSphs analyses with the Fermi-LAT telescope will benefit from larger statistics and

1The fact that the DM should annihilate into W+W− and tt̄ in order to explain the GCE is in accordance with
what was stated in Ref. [185].
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potential discoveries of new ultra-faint dwarfs. At low energies, the point spread function (PSF)
sensitivity for the LAT instrument increases approximately as the square-root of the observation
time, while at high energies, the PSF increases roughly linearly with time. The γ-ray bounds
reported in Ref. [12] used 6 years of Pass8 Fermi data taken from 15 dwarf spheroidals. Thus, we
can conservatively estimate that with 15 years of Fermi data and 3 times more dSphs discovered
(45 dSphs) in the next few years, the LAT constraints will improve by a factor of (

√
15/
√

6)×3 ' 5

compared to the current ones.
As can be seen in Fig. 4.3, the 15 years Fermi-LAT forecast in the W+W− channel indicates

that future dSphs observations will be in significant tension with the set of favored models found
in Region I. Although the Fermi collaboration have not yet released equivalent limits for tt̄ final
states, these should be comparable at the percentage level [181] with those in the bb̄ channel. We
thus use the latest limits accordingly, and show that Fermi-LAT dwarfs will also have the ability
to test our tt̄ solution (Region II). However, here an important remark is in order. As discussed
in Ref. [186], astrophysical uncertainties in the DM parameters can affect the expected γ-ray
emission in a manner that makes the annihilation cross-section uncertain by a factor of ∼ 5 up
and down. Hence, both of our solutions could in principle still escape future Fermi-LAT dwarfs
limits if astrophysical uncertainties are taken into consideration. Also, as there is likely to be at
least some millisecond pulsar contribution, the actual 〈σv〉 could be correspondingly lower and so
even harder to detect.

Using the method presented in Ref. [175], we compute the 95% confidence level upper limits
on the annihilation cross section that will be achievable with the upcoming ground-based γ-ray
observatory CTA [187], assuming annihilation into W+W− and tt̄ channels and the halo model
described earlier in this paper. These limits use the 28 spatial bin morphological analysis and
include a systematic uncertainty of 1% and the effects of the galactic diffuse emission. We find
the 95% confidence level upper limits by first calculating the best fit annihilation cross section,
and then correctly increasing the cross section until −2 lnL increases by 2.71 whilst profiling over
the remaining signal model parameters. These limits are shown in Figure 4.3, and show that
observations towards the GC by CTA will be unable to confirm or exclude the SDFDM model as
an explanation of the GCE.

The SDFDM model can also be tested through direct dark matter detection searches. This
results from either the spin-independent (SI) or spin-dependent (SD) scattering of the χ0 particle
off a target nucleus. Fig. 4.4 displays the predicted SI and SD cross sections for our model set
together with several present and anticipated experimental constraints. Namely, we overlaid the
upper limits from the LUX experiment, and the expected limits from XENON-1T and LZ [143].
As can be seen, these future experiments, in particular, LZ, will be able to cut deeply into the
model set and confirm or rule out the DM explanation of the GCE if it is the only extended source
emitting high energy photons in the GC. We also note that available constraints from IceCube are
just on the edge of probing the set of models that could account for the excess. In fact, the most
recent limits on the spin-dependent WIMP-nucleon elastic cross-section from LUX [9] have begun
to disfavor the best-fit region. This is per se, a great example of the importance of a combined
effort of different search techniques in the quest for dark matter.
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Figure 4.4: Spin-independent σSI (left) and spin-dependent σSD (right) direct detection cross
sections in the SDFDM model in comparison to current and future direct detection limits. The left
panel displays current limits from the LUX experiment (black solid line) and the expected limits
from the forthcoming XENON-1T and LZ [143] experiments (blue dashed and green dot-dashed
lines). The right panel shows the IceCube limits in the W+W− channel (black solid line) from null
observations of the sun, the PICO-2L [140] (green light solid line) and PICO-60 [141] (yellow solid
line) limits as well as the LZ sensitivity (green dashed line). The most recent constraints from
LUX [9] (red and blue solid lines) are also overlaid. The star is the best-fitting model obtained
from our scan. Vertical lines and color code are the same as in Fig. 4.2.
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Chapter 5

Dark matter annihilation into two photons

After the freeze-out of the DM, its annihilation continuous but in smaller rate, principally
in regions where its concentration is so high, for instance, the center of the Milky Way

Galaxy. Therefore, exists the possibility to measure this annihilation in flux that reaches the
earth. However, to measure this flux is so challenging because it is typically much smaller than
the background flux generated by others astrophysical processes. Is in this way that one strategy
to identify DM signals is to search for gamma-ray spectral features as gamma-ray lines, which are
generated directly by the DM annihilation into photons. Fortunately, in the case of the center
of the Milky Way Galaxy, DM particles are expected to be very non-relativistic (v ≈ 10−3) thus
generating monoenergetic photons in the annihilation process that are qualitatively very different
from the ones expected from the known astrophysical background. It is in this way that searches for
gamma-ray spectral features could be competitive for example with direct-detection experiments.
With this motivation, in this chapter, we compute the cross sections for DM annihilation into two
photons for a general model where DM is its own antiparticle and whose stability is guaranteed
by the Z2 symmetry. We accomplish this by carefully classifying all possible one-loop diagrams
and reading off the interaction of the DM with the possible mediators from them. Our approach
is general and leads to the same results found in the literature for popular dark matter candidates
such as neutralino dark matter, minimal dark matter scenarios and Kaluza-Klein dark matter
(work in process). The final goal of this chapter is to develop this general scheme that could be
useful in the future for indirect-detection studies.

5.1 General properties of the annihilation process DM DM → γγ

In order to systematically study DM annihilations into two photons, we will assume that the
DM model satisfies the following conditions:

(i) DM is its own antiparticle and its stability is guaranteed by a Z2 symmetry.

(ii) DM is electrically neutral.

(iii) As in the SM, additional neutral particles, including the DM, do not couple to two photons
at tree level.

(iv) In a cubic vertex, photons couple to particles belonging to the same field. The contribution
of possible FCNC is thus neglected.
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(v) DM has spin zero, one-half or one.

(vi) The underlying DM theory is renormalizable.

(vii) CP is conserved.

According to condition (i) and (v), DM must be a real scalar, a Majorana fermion or a real
vector field. For each of them, the amplitude for the process DMDM → γγ has a complicated
Lorentz structure. However, exploiting the fact that we are only interested in non-relativistic DM,
we will show that all the information can be specified by some form factors depending on the spin
of the DM.

In the following, DM is the DM field, pi and σi (with i = 3, 4) stand for the momentum and the
helicity of the final state photons in the annihilation process, and εi = ε(pi, σi) is the corresponding
polarization vector. Moreover, we assume vanishing DM relative velocity, v = 0, and hence both
particles of the initial state have the same four-momentum p ≡ (mDM, 0, 0, 0) = (p3 + p4)/2.

5.1.1 Scalar DM

In this case, the annihilation amplitude can be cast as MS = Mµνε∗3µε
∗
4µ . The tensor Mµν

depends only on p3 and p4 and satisfies p3µMµν = p4νMµν = 0 according to the Ward identities.
Using this, the property εi · pi = 0 and the fact that two scalar particles at rest form a CP-even
state, it can be shown that

MS = B
(
−gµν +

p4
µp3

ν

2m2
DM

)
ε∗3µε

∗
4µ , (5.1)

where B is a scalar function. In terms of this, the cross section reads (see the Appendix B.2)

σv (DMDM→ γγ) =
|B|2

32πm2
DM

. (5.2)

Hence, for spin-zero DM, our goal is to calculate B.

5.1.2 Majorana DM

In this case, we first write the annihilation amplitude as v1Mµνu2ε
∗
3µε
∗
4ν . That is, Mµν is

the amplitude after stripping out the spinors of the DM particles in the initial state (accordingly,
it has spinor indices). This object has more information than we actually need because we are
only interested in initial states with total spin zero. This is because two fermions at rest (i.e.
with zero orbital angular momentum) and with total spin one form a totally symmetric state,
which is banned for identical particles. Following Refs. [188, 189], we can obtain the amplitude
corresponding to the spin-zero initial configuration as

MF = − 1√
2
Tr
{
Mµν

(
/p+mDM

)
γ5
}
ε∗3µε

∗
4ν . (5.3)

Similar to the scalar case, gauge invariance and CP conservation restrict the annihilation ampli-
tude. Taking into account that two Majorana particles with no orbital angular momentum form
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a CP-odd state, we must have

MF =
iB

2m2
DM

εαβµνp3αp4βε
∗
3µε
∗
4ν . (5.4)

where B is a scalar function1, which can be used to calculate the cross section by means of Eq (5.2)
with an extra factor of 1/4 due to the spin-average of fermions.

5.1.3 Vector DM

In this case, both the initial and final state particles are vector bosons and we can write
the amplitude asMV =Mµ1µ2µ3µ4ε

µ1
1 εµ22 εµ3∗3 εµ4∗4 . Assuming at CP-even initial state, as pointed

out in Ref. [190], from gauge invariance and Bose statistics it follows that this object can be
decomposed as

Mµ1µ2µ3µ4 = 2

(B2 − B6

m4
DM

)
pµ13 pµ24 pµ3pµ4 +

B1

m2
DM

gµ1µ2pµ3pµ4 − B2

m2
DM

gµ1µ3pµ24 pµ4 +
B2

m2
DM

gµ1µ4pµ24 pµ3

+
B2

m2
DM

gµ2µ3pµ13 pµ4 − B2

m2
DM

gµ2µ4pµ13 pµ3 +
B6

m2
DM

gµ3µ4pµ13 pµ24 −
1

2
B1 g

µ1µ2gµ3µ4

+ B2 (gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3) . (5.5)

Hence, our goal is to calculate the function B1, B2 and B6 (we use this notation to keep the
conventions of Ref. [190] for decomposing the amplitude). In terms of these, the corresponding
cross section is given by

σv =
1

576πm2
DM

[
3|B1|2 + 12|B2|2 + 4|B6|2 − 4Re (B1(B∗2 + B∗6))

]
. (5.6)

As a closing remark, we would like to comment on the field corresponding to the DM in this
case. We can not describe spin-1 DM by the gauge boson associated to a local symmetry. This
is because an ordinary gauge field can not be charged under a Z2 symmetry, as the latter would
be explicitly broken. To see this, consider one of the essential ingredients for establishing a local
symmetry: the covariant derivate ∂µ + igAµ. The whole object must transform in the same way
under the Z2 symmetry, if this is preserved. However, its first term is even, while the second one
would be odd if we used the gauge field to describe DM, according to condition (i). The condition
of renormalizability (vi) then implies that we can only use real massive vector fields for our spin-1
DM.

5.2 Classification of the diagrams

Conditions (i)-(vi) allow us to classify all diagrams leading to DM annihilation into photons.
Eventually, from this classification, we will write down the interaction Lagrangians that give rise

1The overall factor in Eq. (5.4) has been chosen for convenience. In terms of helicities, Eq. (5.4) reads MF =
B σ3δσ3 σ4 . Similarly, Eq. (5.1) reads MS = B σ3δσ3 σ4 . Both of them show that the helicities of the final state
particles must equal. This can be understood from the fact that the total angular momentum is zero when the DM
relative velocity is zero. For scalar particles, this is because there is no spin. For Majorana particles, that follows
from the fact that the spin-one state is not possible, as explained above.
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T4 T5 T6

Figure 5.1: Topologies of one-loop diagrams with four external legs.

Particle Z2 U(1)em Line
DM -1 0
Φ(DM±) -1 1
φ 1 1
φ0 1 0

Table 5.1: Generic particle content.

to those processes. Let us first notice that condition (ii) implies that DM does not annihilate
into two photons at tree level. Moreover, as a consequence of requirement (vi), the corresponding
one-loop amplitude must be finite.

Notice that every one-loop diagram must take the form of one of the topologies shown in
Fig. 5.1, which we enumerated for later convenience. From condition (i), we also know that each
diagram must have a Z2 line starting and ending at the DM particles in the initial state. Moreover,
since conditions (ii) and (iii) forbid the radiation of photons from neutral particles in the diagrams,
the fields running in the loop must have electric charge. This means that in addition to the Z2

line, there is closed line in each diagram carrying electric charge.

According to condition (iv), the electric charge loop is associated to only one field, which we
generically call Φ if it is charged under the Z2 symmetry or φ in the opposite case. For the sake
of simplicity, we assume that the electric charge of these fields is equal to the electron charge,
however our discussion can be straightforwardly generalized to an arbitrary charge. We would
like to remark that even though there must be one of these fields in each diagram, we are not
restricting ourselves to this minimal content. In fact, there could be many of these fields in a
given DM theory. Moreover, as we will see later, some diagrams have neutral particles that are
even under the Z2 symmetry and that we generically call φ0.

All these fields and their quantum numbers are summarized in Table 5.1, where we also show
how we will represent them in Feynman diagrams. In particular, lines associated to the Z2

symmetry are in cyan, whereas, as usual, those associated to the electric charge have an arrow.
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Chapter 5. Dark matter annihilation into two photons

With this assignments, we just proved that every one-loop diagram have a cyan line with its ends
in the DM particles in the initial state as well as a loop carrying an arrow.

Using this observation, we can take each topology in Fig. 5.1 and assign fields to its lines by
following the next procedure. First, we consider all the possible permutations of the external legs.
Second, we draw the lines carrying the Z2 and the electric charge quantum numbers. Finally, we
discard the diagrams that violate one of the conditions stated above. In particular, according to
the requirements (ii) and (iii), we will disregard diagrams whose initial legs radiate photons or
have neutral particles directly coupled to two photons. Interestingly, this procedure determines
the vertices between the DM and the mediators involved in the annihilation process.

Topology Diagrams Interactions
γ

γ

DM

DM

γ

γ

DM

DM

DM

DM∓

φ±

L1 =

T1

γ

γ

DM

DM

DM

DM∓

φ±
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γ

γ

DM

DM

γ

γ

DM

DM
DM

DM

φ−

φ+

L3 =

DM

DM

DM−

DM+

L2 =

T2

γ

γ

DM

DM

DM

φ∓

DM±

γ

L4 =

γ

γ

DM

DM

γ

γ

DM

DM

DM

DM∓

φ±

L1 =

γ

γ

DM

DM

γ

γ

DM

DM
DM

DM

φ−

φ+

L3 =

DM

DM

DM−

DM+

L2 =

T3

γ

γ

DM

DM

γ

γ

DM

DM

DM

DM∓

φ±

L1 =

DM

φ∓

DM±

γ

L4 =

Table 5.2: Topologies 1, 2 and 3.

To illustrate the previous procedure, let us first discuss topologies 1, 2 and 3. The correspond-
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ing diagrams are in Table 5.2. None of them violates any of our conditions (i)-(vi). In fact, they
all arise in the one-loop calculation as long as the interaction vertices listed in front exist. These
are

DM

DM∓

φ±

L1 = ,

DM

DM

DM−

DM+

L2 = ,

DM

DM

φ−

φ+

L3 = ,

DM

φ∓

DM±

γ

L4 = . (5.7)

Topology Diagrams Interactions

γ

γ

DM

DM

γ

γ

DM

DM

Violates(iii)

γ

γ

DM

DM

φ0

L5 =

DM

DM

φ0
φ−

φ+

L6 =

T4
γ

γ

DM

DM

γ

γ

DM

DM

Violates (ii)

γ

γ

DM

DM

φ0

L5 =

DM

DM

φ0
φ−

φ+

L6 =

γ

γ

DM

DM

γ

γ

DM

DM

Violates(iii)

T5
γ

γ

DM

DM

Violates (ii)

Table 5.3: Topologies 4 and 5.

A similar discussion applies to topologies 4, 5 and 6. The corresponding diagrams are shown
in Tables 5.3 and 5.4. In front of each diagram, we write either the interaction vertices that
these diagrams require or if it must be discarded because it violates one of the conditions stated
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Chapter 5. Dark matter annihilation into two photons

Topology Diagrams Interactions
γ

γ

DM

DM

Violates (ii)

γ

γ

DM

DM

φ0

L5 =

DM

DM

φ0
φ−

φ+

L7 = γ

T6

γ

γ

DM

DM

Violates(iii)

γ

γ

DM

DM

γ

γ

DM

DM

Violates (ii)

Table 5.4: Topology 6.

above. Interestingly, all the viable diagrams that can be constructed out of topologies 4, 5 and
6 correspond to s-channel diagrams involving a neutral particle φ0, which couples to the DM at
tree-level and that subsequently decays into two photons via a loop of charged particles. Hence,
for these particular topologies, our problem is reduced to calculating the off-shell decay of φ0. We
will discuss this more in detail in Sec. 5.3.2. Here, we just mention that for that to be possible
we need the interactions responsible for the production

φ0

L5 =

DM

DM

, (5.8)

as well as those associated to the decay

φ0
φ−

φ+

L6 = ,
φ0

φ−

φ+

L7 = γ . (5.9)

We arrive to conclusion that, in any DM model satisfying conditions (i)-(vi), the annihilation
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5.3 Calculation of the amplitude

into two photons has an amplitude that can be split into two pieces

B = B
∣∣∣∣Topologies
1, 2 and 3

+ B
∣∣∣∣
s-channel

. (5.10)

On the one hand, the first term includes diagrams associated to topologies 1, 2 and 3, which
must be calculated by means of the vertices in Eq. (5.7). On the other hand, the second term is
associated to a DM pair exchanging a neutral particle in the s-channel which subsequently decays
into photons. Such amplitude requires the vertices in Eq. (5.8) or Eq. (5.9).

Before closing this section, we would like to remark that even though the total annihilation
amplitude is gauge invariant, that is not necessarily the case of each piece in Eq. (5.10). Hence,
we have to carefully specify a gauge for our one-loop amplitude. Conditions (i)-(vi) also set
restrictions on this matter. For fermions or scalars, condition (iv) just demands that no FCNC
are present. However, for gauge bosons, the situation is more involved because photons could
couple to Goldstone and gauge bosons in the same cubic vertex. For instance, vertices such as
γ G+W− are present in linear Rξ gauges of the SM such as the Feynman gauge (Here, G+ is
the Goldstone boson associated to the W+ boson). Nevertheless, as pointed out in Ref. [188], in
non-linear gauges, condition (ii) is satisfied because such vertices are absent [191]. We refer the
reader to appendix B.4 for a detailed discussion. Here, we just mention that we will always work
in one of those non-linear gauges.

We can now write down explicitly each of the Lagrangians in Eqs. (5.7), (5.8) and (5.9), and
calculate the corresponding amplitudes. This is the subject of the following section.

5.3 Calculation of the amplitude

5.3.1 Topologies 1, 2 and 3

DM field Mediators DM

DM∓

φ±

L1 =

DM

DM

DM−

DM+

L2 =

DM

DM

φ−

φ+

L3 =

DM
φ Φ

Real scalar
S S g1 DMΦ∗φ DM2 (g2 ΦΦ∗ + g3 φφ

∗)

F F DMΦ (g1LPL + g1RPR)φ 0

V S i φµ (g11DMDµΦ∗ + g12DµDMΦ∗) DM2(g2 ΦΦ∗ + g3 φµφ
∗µ)

Majorana
S F φDM (g1LPL + g1R PR) Φ∗

0F S Φ∗DM (g1LPL + g1RPR)φ

V F DMφµγµ (g1LPL + g1RPR) Φ∗

Real vector
S S ig1 DMµ(DµΦ∗φ− Φ∗Dµφ) DMµDMµ (g2 ΦΦ∗ + g3 φ

∗φ)

F F ΦDMµγµ (g1LPL + g1RPR)φ 0

Table 5.5: General interactions.

In this section, we calculate the form factors B associated to topologies 1, 2 and 3, which lead
to the diagrams shown in Table 5.2. To that end, we must specify the spin of both the DM and the
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Chapter 5. Dark matter annihilation into two photons

mediators, or equivalently, what sort of fields they are, so that we can construct their Lagrangian.

Let us start with the DM field. Condition (v) implies that DM must be a real scalar, a
Majorana fermion or a real vector field. With respect to the mediators, we will assume that Φ

is either a complex scalar (S) or a fermionic field (F). Since it is charged under Z2, we do not
consider the possibility of Φ as a vector boson. Charged spin-1 particles can only be described in
a renormalizable way by means of a non-abelian gauge boson, which must not be charged under
a Z2 symmetry, as explained above.

Additionally, we will assume that φ is a scalar (S), a fermion (F) or a gauge boson (V). Note
that Goldstone bosons - which are necessary in the non-linear Feynman gauge- are included in
this list. Also, notice that the Padded–Popov ghosts are not considered here because if they arose
in topologies 1, 2 or 3, DM would directly couple to them, that is, DM would be a gauge boson, a
Goldstone particle or a scalar field acquiring a vev; all of which is forbidden by the Z2 symmetry
(See Appendix B.4 for more details about Ghosts in the non-linear gauge). We will see later that
ghosts must nevertheless be considered for topologies 4 and 5, which involve s-channel mediators.
We discuss now the interaction Lagrangians.

Interactions of DM field DM with the charged mediators Φ and φ

If we restrict to the previous possibilities, for each of them we can write down the most
general Lagrangian associated to the interaction vertices of Eq. (5.7). We show this in Table 5.5,
where the letters S, F and V specify the nature of each field, and stand schematically for scalar
, fermionic and vector, respectively. Furthermore, in each case we use generic couplings whose
subindex corresponds to the Lagrangian they belong to. Notice that we did not write down the
Lagrangians L4 of Eq.(5.7). This is because gauge invariance demands that these interactions can
only arise from the covariant derivative associated to the photon gauge field.

Interactions of the charged mediators Φ and φ with photons

For scalar and fermions, that is trivial as they are described by the usual expressions

L Scalar
Mediators

= Dµφ∗Dµφ+DµΦ∗DµΦ−m2
φ φ
∗φ−m2

Φ Φ∗Φ , (5.11)

LFermionic
Mediators

= iφ /Dφ+ iΦ/DΦ−mφ φφ−mΦ ΦΦ . (5.12)

where D = ∂− ieA is the electromagnetic covariant derivative and A is the photon field. The case
of the vector mediators φµ is more complicated. As mentioned above, they must be described
by a massive gauge field. Hence, a general approach here is not possible because different gauge
groups might lead to different charged vector boson interactions. For concreteness, from now on
we will assume that the vector mediator reassembles the W+ boson of the SM. This assumption
is not so restrictive as it allows to study DM with electroweak quantum number as well as other
scenarios where DM interacts with other gauge bosons arising from larger gauge symmetries such
as W ′ bosons in left-right symmetric theories (See e.g. Ref. [192,193]) or 3-3-1 scenarios (See e.g.
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5.3 Calculation of the amplitude

Ref. [194]). Therefore, the vector boson Lagrangian is given by

L V ector
Mediator

= −1

2

(
Dµφ∗ν −Dνφ∗µ

)
(Dµφν −Dνφµ) +m2

φ φ
∗µφµ − ie Fµνφµφ∗ν + δL . (5.13)

where F is the electromagnetic field strength and δL is the piece of the interaction obtained by
the gauge-fixing procedure in the Feynman non-linear gauge (see Appendix B.4 for details)

δL = −e2AµAνφ∗µφν + ieAµ(φµ∂
νφ∗ν − φ∗µ∂νφν) . (5.14)

Massive vector fields come with Goldstone bosons and ghosts. While the latter are not relevant
for topologies 1, 2 and 3, the former must be taken into account here. If we were to perform the
calculation in any of the usual Rξ gauges, we would have to also introduce interactions between the
Goldstone bosons, the charged vector fields and the photons. Nevertheless, the Goldstone bosons
decouple from the gauge field in the non-linear gauge and therefore in that case the relevant piece
of their Lagrangian for our purposes is simply given by Eq. (5.11) (with φ as the Goldstone boson).

We are now ready to calculate the B factors for each scenario of Table 5.5. To that end,
by means of FeynRules [132, 195], we implement the Lagrangians quoted in this table as well
as those of Eqs. (5.11),(5.12) and (5.13) in FeynArts [138] and FormCalc [196]. Then, we
calculate the amplitude for the process DMDM→ γγ in each case and have FormCalc to reduce
their tensor integrals to scalar Passarino-Veltman functions.

Unfortunately, for relative DM velocities approaching zero, i.e. v → 0, the previous algorithm
for reducing the tensor integrals in the amplitude to scalar functions leads to numerical inestabili-
ties and even breaks down for v = 0. This pathological behavior is well-understood and stems from
the assumption that the external momenta in the annihilation process are linearly independent.
Following [197], we reduce the integrals dropping such assumption. For a detailed description
of this procedure, we refer the reader to Appendix B.3.3. Specifically, this algorithm reduces
the four-point function to three-point functions. Later, we used the Package-X [198] to reduce
all the remaining coefficients tensor Cµ, Cµν , Cµνρ, · · · , to the scalar Passarino Veltman C0 [156].
Usually, the results are given in terms of C0 which can be given in terms of the dilogarithm Li2
functions. However, in the case of C0, the notation is more compact and readable.

In Sec. 5.1, based on general considerations such as Lorentz and gauge invariance, we argued
that the annihilation amplitude can be cast as shown in Eqs. (5.1), (5.4) and (5.5). Using the
previous procedure, we explicitly corroborate that. Furthermore, for a given set of interactions
L1, L2 and L3, we can decompose each form factor in terms of Passarino-Veltman functions of
two and three points describe in the Appendix B.3. Concretely,
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Chapter 5. Dark matter annihilation into two photons

B
∣∣∣∣Topologies
1, 2 and 3

=
α

π

[
x1 + x2

C0(0, 1,−1, r2
φ, r

2
φ, r

2
Φ)

(r2
Φ − r2

φ)(1 + r2
Φ − r2

φ)
+ x3

C0(0, 1,−1, r2
Φ, r

2
Φ, r

2
φ)(

−r2
Φ + r2

φ

)(
1− r2

Φ + r2
φ

)
+ x4 C0

(
0, 4 , 0, r2

φ, r
2
φ, r

2
φ

)
+ x5 C0

(
0, 4 , 0, r2

Φ, r
2
Φ, r

2
Φ

)
+ x6

(
B0(4, r2

φ, r
2
φ)−B0(1, r2

Φ, r
2
φ)
)

+ x7

(
B0(4, r2

Φ, r
2
Φ)−B0(1, r2

Φ, r
2
φ)
)

+ x8

(
B0(−1, r2

Φ, r
2
φ)−B0(1, r2

Φ, r
2
φ)
) ]

, (5.15)

where rφ ≡ mφ/mDM, rΦ ≡ mΦ/mDM and xi are dimensionless coefficients for different
combinations of mediators. The same expression holds for B1, B2 and B6 in the case of vector
DM. The goal of this work is to compute all the xi coefficients for each model (work in process).
In this thesis, as an illustration, we only will apply this schema to two particular examples in the
Sec. 5.4.

5.3.2 Topologies associated to s-channels

DM field DM Mediator φ0 φ0

L5 =

DM

DM

Real scalar
CP-even g5φ

0DM2

CP-odd 0

Majorana
CP-even g5φ

0DMDM
CP-odd ig5φ

0DMγ5DM

Real vector
CP-even g5φ

0DMµDMµ

CP-odd 0

Table 5.6: Interactions of DM with neutral
mediators.

Mediators φ0
φ−

φ+

L6 =

φ0 φ

CP-even
S g6φ

0 φ∗φ

F g6φ
0 φφ

V g6φ
0φ∗µφµ

Gh g6φ
0
(
φ
−
φ+ φ

+
φ∗
)

CP-odd
S 0

F ig6φ
0 φγ5φ

V 0

Gh ig6φ
0
(
φ
−
φ− φ+

φ∗
)

Table 5.7: Interaction among neutral and
charge mediators.

As for previous topologies, we must first specify the nature of the particles involved in the
annihilation diagram. Tables 5.3 and 5.4 clearly show that the particle in the s-channel is a boson
electrically neutral and even under the Z2 symmetry. In Appendix B.4, we prove that if the
particle on the s-channel is a massive gauge boson, its contribution to the annihilation vanishes
in the Landau gauge, and only the corresponding (massless) Goldstone boson must be taken into
account. Thus, without loss of generality, we will only consider the possibility of a scalar particle
on the s-channel. Furthermore, because we are assuming that CP is conserved, we can classify
the the possible s-channel diagrams according to the CP-parity of the scalar mediator.

Using this, we divide the problem in two parts. On the one hand, we describe how the DM
couples to the neutral mediator. This information is carried by the Lagrangian L5 of Eq. (5.8),
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5.3 Calculation of the amplitude

which we write in Table 5.6 for each type of DM. On the other hand, we describe the off-shell
decay of the mediator. This is done by means of the Lagrangian L6 of Eq.(5.9), which we specify
in Table 5.7 for all the possible charged mediators. Notice that L7 vanishes2. In contrast to case
of topologies 1, 2 or 3, here we do need to take into account the presence of Ghosts because a
scalar particle can interact with them if it also couples to charged gauge bosons. Notice that for
each charged gauge boson, there are two Ghosts, as shown in the Table.

Combining the information on Tables 5.6 and 5.7, we can calculate the annihilation amplitude
for any s-channel process. We discuss the case the Higgs and the Z boson as s-channel mediators.
They are very important not only because they arise in many DMmodels but also because we know
their couplings to SM particles and consequently their contribution to the annihilation amplitudes
can be calculated precisely.

• φ0 as the Higgs boson. If SM scalar doublet is given by

H =

(
G+

v+h+iG0
√

2

)
, (5.16)

the relevant couplings of Table 5.7 are

g6 =


−m2

h
v for φ = G+,

−mf
v for φ = any SM fermion,

+
2m2

W
v for φ = W+,

−m2
W
v for the ghosts of W+.

(5.17)

For scalar DM annihilating into photons via the Higgs on the s-channel, we found that the
B factor is given by

BhSM
∣∣∣∣
s-channel

=
g5α

πv

m2
h

(
1− r2

W fW
)︸ ︷︷ ︸

loop of G+

−4mDM
∑
f

Q2
f Nf mfrf

(
1− (r2

f − 1)ff
)

︸ ︷︷ ︸
loop of SM fermions

(5.18)

+ 8m2
W

(
1− (r2

W − 2)fW
)︸ ︷︷ ︸

loop of W+

−2m2
W

(
1− r2

W fW
)︸ ︷︷ ︸

loop of ghosts

 1

4m2
DM −m2

h + iΓhmh
,

where we scale the fermions contribution with their electric charge and number of colors,
rf = mf/mDM, rW = mW /mDM, and introduce a common way of expressing the Passarino-
Veltman function

fφ = −2C0

(
0, 4, 0, r2

φ, r
2
φ, r

2
φ

)
. (5.19)

2This only true if we demand that the charged particles in L7 belong to the same field. We do that because we
want to satisfy condition (iv) for closing the loop. If we drop this requirement, L7 does not vanish. For instance,
if the particle in the s-channel is the Higgs boson, vertices such as hW+G−γ would contribute to the annihilation
into photons because the vertex W+G−γ exists in general (for clearer picture, see the second row of Table 5.4). As
discussed previously, in order to avoid these situations, we work in the non-linear Feynman gauge where the latter
vertex does not exist.
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Moreover, if we define

Ah1(rW ) = −(2 + 3r2
W )− 3(2− r2

W )r2
W fW , Ah1/2(rf ) = 2 r2

f

(
1− (r2

f − 1)ff
)
, (5.20)

and notice that αm2
h = −α(4m2

DM −m2
h + iΓhmh) + 4αm2

DM + O(α2), Eq. (5.19) can be
cast in a more compact form

BhSM
∣∣∣∣
s-channel

= −
2m2

DMg5α
[∑

f Q
2
f Nf A

h
1/2(rf ) +Ah1(rW )

]
πv(4m2

DM −m2
h + iΓhmh)

− g5α

πv

(
1− r2

W fW
)
.(5.21)

In the following section, we will see that in realistic models the last term typically cancels
with another one coming from topologies 2 and 3.

Notice that if the CP-even scalar φ0 is not the Higgs itself but a neutral particle that mixes
with the Higgs and inherits its couplings to the SM particles, we can use the previous
expressions for calculating the decay amplitude (obviously, only after adding other possible
contributions not present in the SM).

• φ0 as the Z boson. For scalar and vector DM, the amplitude vanishes. For Majorana
DM, as explained above, the vector boson Z itself does not contribute to the amplitude in
the Landau gauge but we have to to account for its Goldstone boson G0 contribution to
annihilation process. In that case, while ghosts give zero, SM fermions running in the loop
give

BZSM
∣∣∣∣
s-channel

=
4
√

2 g5 αm
3
DM
∑

f ±Q2
f Nf r

2
fff

πv(4m2
DM −m2

G0 + iΓG0mG0)
=
√

2
g5αmDM

πv

∑
f

±Q2
fNfr

2
fff ,(5.22)

where we took g6 = ±mf/v with a negative sign for the charged leptons, the down, strange
and bottom quarks, and a positive sign for the up, charm and top quarks. In the last equation
we used the fact that the Goldstone boson is massless in the Landau gauge.

5.4 Two concrete examples

This general framework is currently in process. For that reason, we only will apply this general
scheme to the particular case of the scalar DM involved in the extension of the SDFDM model
with reals scalars singlets described by the Lagrangian 2.43. In this case, this model is mapped
to the specific general models SFF and SSS described before in the Table: 5.5. Those correspond
respectively to the specific scalar DM models:

1. Scalar DM with a vector-like fermion X (SFF)

This model was study previously in the Literature for the case of SM’s right-handed leptons
(see e.g. Ref. [199]). In this case, the dark sector interaction with the SM is carry out by the
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Figure 5.2: Feynman diagrams for DMDM→ γγ generated with FeynArts [138].

Lagrangian 3

L = −(yXfRDM + h.c.) (5.23)

In this case, the diagrams are classified in the topology 1 (boxes). Those are shown in Fig. 5.2.
The type of mediator, as well as the relevant couplings, are

Mediator Type Mass DM Couplings
f Fermion φ mDMrφ g1L = 0

X Fermion Φ mDMrΦ g1R = y

The only non-vanishing coefficients xi are:

x1 = 2 g1R

x2 = 2r2
φ(1− r2

Φ + r2
φ) g1R x4 =

4r2
φ(1− r2

φ)

1 + r2
Φ − r2

φ

g1R

x3 = 2r2
Φ(1− r2

Φ − r2
φ) g1R x5 =

4r2
Φ(1− Φ2)

1 + r2
φ − r2

Φ

g1R . (5.24)

3L = −hiαεabR̃auLbiSα in the extension of the SDFDM model with real scalars singlts Sα for left-handed SM
leptons (Eq. (2.43)).
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Therefore, after using the master equation (5.15), this procedure gives

B =
α y2

π
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φ
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φ

2r2
φ
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2
φ)

+
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φ
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φ
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Φ

r2
φ − r2

Φ
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Φ) +

4r2
φ(1− r2

φ)
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φ
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2
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+
4r2

Φ(1− r2
Φ)

1 + r2
φ − r2

Φ

C0(4, 0, 0; r2
Φ, r

2
Φ, r

2
Φ)
]}

, (5.25)

which, according to Eq. (5.2), it corresponds to a cross section

σv =
B2

32πm2
DM

. (5.26)

In agreement with the results of the literature [199].

2. Singlet scalar DM (SSS)
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Figure 5.3: Feynman diagrams for DMDM→ γγ generated with FeynArts [138].

In this case the DM is the scalar field, singlet under SU(2)L. Then, the only non-trivial
interaction of DM with the SM takes place via the so-called Higgs portal L = −λH DM2H†H ⊃
λHDM2(G+G− + v h) 4. Hence, there are two mediators. First, G+, which gives rise to diagrams
with topologies 2 and 3. Second, the Higgs boson, which acts as a mediator on the s-channel (see
Fig.5.3). The type of mediator, as well as the relevant couplings, are

Mediator Type Mass DM Couplings
G+ Scalar φ mDMrW g3 = λH

h CP-even φ0 mh g5 = λHv

4L = −λSH11 εabH̃aHbS2
1 in the Lagrangian (2.43).
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5.4 Two concrete examples

The contribution of the Higgs boson was already calculated and reported in Eq. (5.21). The
contribution of G+ from topologies 2 and 3 can be computed using Eq. 5.15 with the only non-
vanishing coefficients x1 = g3 and x4 = 2r2

W g3. Therefore, after using the master equation (5.15)
and the Higgs s-channel 5.21, this procedure gives

B =
αλH
π

(
1 + 2r2

WC0(0, 4, 0, r2
W , r

2
W , r

2
W )
)

︸ ︷︷ ︸
loops of G+:

γ

γ

DM

DM

+

γ

γ

DM

DM

+ Bh
∣∣∣∣
s-channel

= − 2m2
DMαλH

π
(
4m2

DM −m2
h + iΓhmh

)
∑

f

NfQ
2
fA

h
1/2(τf ) +Ah1(τW )

 , (5.27)

which, according to Eq. (5.2), corresponds to a cross section

σv =
m2

DMα
2 λ2

H

8π3
(
(4m2

DM −m2
h)2 +m2

hΓ2
h

)
∑

f

Q2
f Nf A

h
1/2(rf ) +Ah1(rW )

2

, (5.28)

in agreement with the results of the literature (see the Ref. [200]). As in the previous example,
it helps us to check that our general scheme is working properly and it can be applied to a large
number of models that fulfill the conditions 5.1. This work is currently in process...
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Conclusions

We have combined the singlet-doublet fermion dark matter (SDFDM) and the singlet scalar
dark matter (SSDM) models into a framework that generates radiative neutrino masses taking
care that the required lepton number violation only happens if the scalars are real. We have then
explored the novel features of the final model in flavor physics, collider searches, and dark matter
related experiments. The most notable conclusions after assembling these models were:

i. In the case of SSDM, the singlet-doublet fermion mixing cannot be too small in order to
be compatible with lepton flavor violating (LFV) observables like Br(µ→ eγ), while in the
case of fermion dark matter the LFV constraints are automatically satisfied.

ii. The presence of new decay channels for the next to lightest odd particle opens the possibility
of new signals at the LHC. In particular, when the singlet scalar is the lightest odd-particle
and the singlet-like Majorana fermion is heavier than the charged Dirac fermion, the pro-
duction of the later yields dilepton plus missing transverse energy signals. For large enough
e± or µ± branchings, these signals could exclude charged Dirac fermion masses of order
500GeV in the Run I of the LHC.

iii. The effect of coannihilations with the scalar singlets was studied in the case of doublet-like
fermion dark matter. In that case, it is possible to obtain the observed dark matter relic
density with lower values of the mass for the lightest odd dark matter particle.

In a second stage, we have entertained the possibility of finding model points in the SDFDM
model (without scalars) that can explain the γ-ray excess in the galactic center (GCE) while being
in agreement with a multitude of different direct and indirect dark matter detection constraints.
We found two viable regions:

i. DM particles with masses of ∼ 99 GeV annihilating mainly into W gauge bosons with
branching ratios greater than ∼ 70%.

ii. DM particle with mass in the range ∼ (173− 190) GeV annihilating predominantly into the
tt̄ channel with branching ratios greater than ∼ 90%.

The analysis of the γ-ray excess assumed that the dark matter is made entirely out of the lightest
stable particle χ0 of the SDFDM model. Despite this being a very restrictive assumption, we
have demonstrated that there exist models capable of accounting for the GeV excess that can be
fully tested by the forthcoming XENON-1T and LZ experiments as well as by future Fermi-LAT
observations in dwarf galaxies. Interestingly, the most recent limits presented by LUX-2016 are
able to probe a fraction of the good fitting models to the GCE found in this work. We also showed
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Conclusions

through realistic calculations of CTA performance when observing the GC that this instrument
will not have the ability to confirm the SDFDM model if it is causing the GCE.

As a final stage of this work, we have created a general framework in order to describe the dark
matter self-annihilation into two photons. The principal conclusion is that we computed a master
equation for this cross section in a general model when the dark matter is its own antiparticle
and whose stability is guaranteed by the Z2 symmetry. This approach is general and leads to the
same results found in the literature for popular dark matter candidates such as singlet scalar dark
matter, neutralino dark matter, minimal dark matter scenarios and Kaluza-Klein dark matter,
i. e. we developed a general scheme to compute the prospects for gamma-ray spectral features
as gamma-ray lines in a general model that could be useful in the future for indirect-detection
studies.

76



Appendices

77





Appendix A

Details: SDFDM model

A.1 Analytical formulas for masses and mixing matrix of neutral
fermions

The characteristic equation of the mass matrix (2.8) is [114]1:[(
Mχ

diag

)2

ii
−M2

D

] [
MN −

(
Mχ

diag

)
ii

]
+ 1

2m
2
λ

[(
Mχ

diag

)
ii

+MD sin 2β
]

= 0 . (A.1)

The solutions to the cubic equation in
(
Mχ

diag

)
ii
are:

mχ
1 =z2 +

MN

3
, mχ

2 =z1 +
MN

3
, mχ

3 =z3 +
MN

3
. (A.2)

where

z1 =

(
−q

2
+

√
q2

4
+
p3

27

)1/3

+

(
−q

2
−
√
q2

4
+
p3

27

)1/3

z2 = −z1

2
+

√
z2

1

4
+

q

z1

z3 = −z1

2
−
√
z2

1

4
+

q

z1

p = −1

3
M2
N −

(
M2
D +m2

λ

)
q = − 2

27
M3
N −

1

3
MN

(
M2
D +m2

λ

)
+
[
MNM

2
D −m2

λ sin(2β)MD

]
. (A.3)

Notice that q2/4 + p3/27 < 0 and therefore, we have three real masses mχ
i (i = 1, 2, 3).

Expanding the eigensystem in Eq. (2.10) by assuming that N1i 6= 0, we have

1The analytical formulas for the neutralino masses and the neutralino mixing matrix was analyzed in [201].
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A.1 Analytical formulas for masses and mixing matrix of neutral fermions

Mχ
21

N2i

N1i
+Mχ

31

N3i

N1i
= −(Mχ

11 −mχ
i )

(Mχ
22 −mχ

i )
N2i

N1i
+Mχ

32

N3i

N1i
= −Mχ

12

Mχ
23

N2i

N1i
+ (Mχ

33 −mχ
i )
N3i

N1i
= −Mχ

13 ,

where

N1i =

[
1 +

(
N2i

N1i

)2

+

(
N3i

N1i

)2
]−1/2

. (A.4)

Using the matrix Mχ given in the Eq. (2.8), we get the ratios

N2i

N1i
= −mλ cosβ

mχ
i

+
MD

mχ
i

[mχ
i (MN −mχ

i ) +m2
λ cosβ2]

mλ(mχ
i sinβ +MD cosβ)

,

N3i

N1i
= − [mχ

i (MN −mχ
i ) +m2

λ cosβ2]

mλ(mχ
i sinβ +MD cosβ)

. (A.5)

A.1.1 Approximate mixing matrix

By using the analytical expressions for the mixing ratios of Eq. (A.5) with the approximate
eigenvalues (2.14) in Eq. (A.4), we obtain

N2
11 =1−

[
M2
D +M2

N + 2MDMN sin(2β)
]
m2
λ

(M2
D −M2

N )2
+O

(
m4
λ

)
N2

12 =
[sin(2β) + 1]m2

λ

2 (MN −MD)2 +O
(
m4
λ

)
N2

13 =− [sin(2β)− 1]m2
λ

2 (MD +MN )2 +O
(
m4
λ

)
. (A.6)

N2
21 =

m2
λ (sinβMD + cosβMN )2(

M2
N −M2

D

)2 +O
(
m4
λ

)
N2

22 =
1

2
− m2

λ(sinβ + cosβ) [cosβMN − sinβ (MN − 2MD)]

4MD (MN −MD)2 +O
(
m4
λ

)
N2

23 =
1

2
+
m2
λ(cosβ − sinβ) [sinβ (2MD +MN ) + cosβMN ]

4MD (MD +MN )2 +O
(
m4
λ

)
. (A.7)
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Appendix A. Details: SDFDM model

N2
31 =

(
MD cosβ +MN sinβ

M2
N −M2

D

)2

m2
λ +O

(
m4
λ

)
N2

32 =
1

2
− [MN sinβ − (MN − 2MD) cosβ] (cosβ + sinβ)

4MD (MN −MD)2 m2
λ +O

(
m4
λ

)
N2

33 =
1

2
− [MN sinβ + (MN + 2MD) cosβ] (cosβ − sinβ)

4MD (MN +MD)2 m2
λ +O

(
m4
λ

)
. (A.8)

In particular, with Eq. (2.14) and the expressions for N2
3i, the identity (2.48) is satisfied up to

terms of order O
(
m4
λ

)
.

A.2 The interaction Lagrangian

In the SDFDM model we have the next interaction terms (see the Eq. 2.15)

L =
i

2

(
R†dσ

µDµRd + R̃†uσ
µDµR̃u

)
− h√

2

(
−λdψ0

LN + λuψ
0
R
†
N + h.c

)
, (A.9)

where the field N and the doublets Rd, R̃u defined in the Eq. 2.2 are constructed of Weyl spinors.
In terms of four-components Dirac spinors constructed with the two-components Weyl spinors
ψ0,±
LR and N as

Ψ0 =

(
ψ0
L

ψ0
R
†

)
Ψ± =

(
ψ±L
ψ∓R
†

)
Ñ =

(
N

N †

)
, (A.10)

this Lagrangian can be cast as

L = Ψ1i /DΨ1 + Ψ2i /DΨ2 −
h√
2

(
−λdÑPLΨ0 + λuÑPRΨ0 + h.c

)
, (A.11)

where

Ψ1 =

(
Ψ0
L

Ψ−L

)
, Ψ2 =

(
−Ψ+

R

Ψ0
R

)
(A.12)

are the SU(2)-doublets of Dirac fermions, with Ψ0
L = PLΨ0 = (ψ0

L, 0)T , Ψ−L = PLΨ− = (ψ−L , 0)T ,
Ψ0
R = PRΨ0 = (0, ψ0

R
†
)T and Ψ+

R = PRΨ+ = (0, ψ−R
†
)T . Therefore, taking the covariant deriva-

tive [202]

/D =γµ
(
∂µ + igW̃µ(x) + ig′yBµ(x)

)
= γµ

(
∂µ + ig

1

2

(
W 3
µ

√
2W †µ√

2Wµ −W 3
µ

)
− ig′ 1

2
Bµ(x)

)
(A.13)
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A.2 The interaction Lagrangian

in the Eq. (A.11), we get explicitly that

Ψ1i /DΨ1 =R̄diγ
µ

(
∂µ + ig

1

2

(
W 3
µ

√
2W †µ√

2Wµ −W 3
µ

)
− ig′ 1

2
Bµ(x)

)
Rd

=
(

Ψ̄0
L Ψ̄−L

)
iγµ

(
∂µ + ig

1

2

(
W 3
µ

√
2W †µ√

2Wµ −W 3
µ

)
− ig′ 1

2
Bµ(x)

)(
Ψ0
L

Ψ−L

)
=
(
Ψ̄0
Li/∂Ψ0

L + Ψ̄−L i/∂Ψ−L
)
− g

2

[
Ψ̄0
Lγ

µW 3
µΨ0

L +
√

2Ψ̄−Lγ
µWµΨ0

L +
√

2Ψ̄0
Lγ

µW †µΨ−L − Ψ̄−Lγ
µW 3

µΨ−L

]
+
g′

2

(
Ψ̄0
Lγ

µBµΨ0
L + Ψ̄−Lγ

µBµΨ−L
)

=
(
Ψ̄0
Li/∂Ψ0

L + Ψ̄−L i/∂Ψ−L
)
− g√

2

[
Ψ̄−Lγ

µWµΨ0
L + h.c

]
− g

2

[
Ψ̄0
Lγ

µW 3
µΨ0

L − Ψ̄−Lγ
µW 3

µΨ−L
]

+
g′

2

(
Ψ̄0
Lγ

µBµΨ0
L + Ψ̄−Lγ

µBµΨ−L
)

=
(
Ψ̄0
Li/∂Ψ0

L + Ψ̄−L i/∂Ψ−L
)
− g√

2

(
Ψ̄−Lγ

µWµΨ0
L + h.c

)
−1

2

[
Ψ̄0
Lγ

µ(gW 3
µ − g′Bµ)Ψ0

L − Ψ̄−Lγ
µ(gW 3

µ + g′Bµ)Ψ−L
]

=
(
Ψ̄0
Li/∂Ψ0

L + Ψ̄−L i/∂Ψ−L
)
− g√

2

(
Ψ̄−Lγ

µWµΨ0
L + h.c

)
−1

2

[
Ψ̄0
Lγ

µ

(
g

cos θW
Zµ

)
Ψ0
L − Ψ̄−Lγ

µ

(
g

(
2 cos2 θW − 1

cos θW

)
Zµ + 2eAµ

)
Ψ−L

]
=
(
Ψ̄0
Li/∂Ψ0

L + Ψ̄−L i/∂Ψ−L
)
− g√

2

(
Ψ̄−Lγ

µWµΨ0
L + h.c

)
− g

2 cos θ
Ψ̄0
L /ZΨ0

L

+g

(
2 cos2 θW − 1

2 cos θW

)
Ψ̄−L /ZΨ−L − Ψ̄−Le /AΨ−L . (A.14)

We used the SM relations [202]

g sin θW = g′ cos θW = e ,

(
Zµ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
W 3
µ

Bµ

)
. (A.15)

Analogously

Ψ2i /DΨ2 =
(
Ψ̄0
Ri/∂Ψ0

R + Ψ̄+
Ri/∂Ψ+

R

)
+

g√
2

(
Ψ̄0
Rγ

µWµΨ+
R + h.c

)
+

g

2 cos θ
Ψ̄0
R /ZΨ0

R

−g
(

2 cos2 θW − 1

2 cos θW

)
Ψ̄+
R
/ZΨ+

R − Ψ̄+
Re /AΨ+

R . (A.16)

Now, replacing the Eq. (A.14) and Eq. (A.16) in the Eq. (A.11) we have

L =
(

Ψ̄0
Li/∂Ψ0

L + Ψ̄−L i/∂Ψ−L + Ψ̄0
Ri/∂Ψ0

R + Ψ̄+
Ri/∂Ψ+

R

)
− g√

2

(
Ψ̄−L /WΨ0

L − Ψ̄0
R /WΨ+

R + h.c
)
− g

2 cos θ

(
Ψ̄0
L /ZΨ0

L − Ψ̄0
R /ZΨ0

R

)
+g

(
2 cos2 θW − 1

2 cos θW

)(
Ψ̄−L /ZΨ−L − Ψ̄+

R
/ZΨ+

R

)
−
(
Ψ̄−Le /AΨ−L + Ψ̄+

Re /AΨ+
R

)
− h√

2

(
−λdÑΨ0

L + λuÑΨ0
R + h.c

)
. (A.17)
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Therefore, the interaction Lagrangian in the SDFDM model is given by

LInt = − g√
2

(
Ψ̄−L /WΨ0

L − Ψ̄0
R /WΨ+

R + h.c
)
− g

2 cos θ

(
Ψ̄0
L /ZΨ0

L + Ψ̄0
R /ZΨ0

R

)
+g

(
2 cos2 θW − 1

2 cos θW

)(
Ψ̄−L /ZΨ−L + Ψ̄+

R
/ZΨ+

R

)
−
(
Ψ̄−Le /AΨ−L + Ψ̄+

Re /AΨ+
R

)
− h√

2

(
−λdÑΨ0

L + λuÑΨ0
R + h.c

)
. (A.18)

Finally, we constructed the Majorana spinors X0
i and the Dirac spinor X± as

X0
i =

(
(χ0
i )α

(χ0†
i )α̇

)
=

(
Nji Ξ

0
j

N †ji Ξ
†0
j

)
X± =

(
χ±α
χ∓
†α̇

)
=

(
ψ±L
ψ∓R
†

)
, (A.19)

where we used the Eq. (2.4). Thus, we can know explicitly the Dirac spinors Ψ0
LR and Ψ±LR that

we constructed in order to get the Eq. (A.18). Those are

Ψ0
L =

(
ψ0
L

0

)
= N2i

(
χ0
i

0

)
= N2iPLX

0
i Ψ0

R =

(
0

ψ0
R
†

)
= N3i

(
0

χ0
i
†

)
= N3iPRX

0
i

Ψ±L =

(
ψ±L
0

)
= PLX

± Ψ±R =

(
0

ψ±R
†

)
= PRX

± . (A.20)

Therefore, replacing these spinors in the Eq. (A.18), we get

LInt =− g√
2

(X̄− /W (N2iPL −N3iPR)X0
i + h.c) +

g

4 cos θ
X̄0
i /Z (N2iN2j −N3iN3j) γ

5X0
j

+g

(
2 cos2 θW − 1

2 cos θW

)
X̄− /ZX− − eX̄− /AX− − 1√

2
hX̄0

i (−λdN2iN1j + λuN3iN1j)X
0
j , (A.21)

i.e. the interaction of the DM with de W , Z and h SM gauge boson is given by

LχInt = −X̄− /WcWXXiX
0
i − cZXiXjZµX̄0

i γ
µγ5X0

j − chXiXjhX̄0
iX

0
j (A.22)

where

cWXXi =
g√
2

(N2iPL −N3iPR) (A.23)

cZXiXj =
g

4 cos θW
(N3iN3j −N2iN2j) (A.24)

chXiXj =
1√
2

(−λdN2iN1j + λuN3iN1j) . (A.25)
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A.3 Spin-independent cross section in the SDFDM model

χ0
χ0

N N

h

p1 p3

p2 p4

Figure A.1: Scalar elastic scattering with nucleons.

A.3 Spin-independent cross section in the SDFDM model

The amplitude of the process shown in Fig. A.1 is

M =ū(s3, p3)u(s1, p1)
imNfN

v
i∆F (p1 − p3)ichX1X1 ū(s4, p4)u(s2, p2)

=− i imNfN
v

chX1X1∆F (p1 − p3)ū(s3, p3)u(s1, p1)ū(s4, p4)u(s2, p2) , (A.26)

therefore,

∑
si

|M|2 =

(
mNfN
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)2∑
s1,3
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=

(
mNfN
v
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(/p1

+mN )(/p3
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Tr
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]
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)2 (
4p1 · p3 + 4m2

N

) (
4p2 · p4 + 4m2

χ0

)
. (A.27)

Now, if we do the approximation of pi → 0, we get

|M|2 =
∑
si

|M|2 ≈
(
mNfN
v

chX1X1

1

m2
h

)2

16m2
Nm

2
χ0 =

16f2
Nc

2
hX1X1

m4
Nm

2
χ0

v2m4
h

. (A.28)

Therefore, it means that for an elastic scattering, the differential cross section is given by

dσ

dΩ
=

1

64π2s
|M|2 ≈ 1

64π2(mN +m2
χ0)2

16f2
Nc

2
hX1X1

m4
Nm

2
χ0

v2m4
h

=
m2
r

4π2

(
chX1X1

vm2
h

)2

f2
Nm

2
N , (A.29)

where s = (EN + Eχ0)2 ≈ (mN + mχ0)2 in the limit of zero-momentum and mr =
mNmχ0

(mN +mχ0)
is the reduced mass of the system. Finally, integrating in the solid angle, the spin-independent
cross section a tree level is given by

σSI =
m2
r

π

(
chX1X1

vm2
h

)2

f2
Nm

2
N . (A.30)
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A.4 One-loop neutrino masses in the interaction basis

By using the Feynman rules for Weyl spinors we have the diagrams for neutrino masses at
one-loop shown in A.2

Figure A.2: One-loop neutrino mass in the interaction basis

The results from the Refs. [123,203] adapted to our case imply that (λd → YL λu → YR)

Mν
ij = 2

∑
α

hiαhjα

[
λ2
u

∫
d4k

(2π)4
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+λ2
d

∫
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(2π)4
iSF (k,MD)PLSF (k,MN )PLiSF (k,MD) ∆F (k + p,mSα)

]
.

(A.31)

Mν
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∑
α
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)]
, (A.32)

where
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=

(4π)2

i

∫
d4k

(2π)4

k2(
k2 −m2

D

)2 (
k2 −M2

N

) (
k2 −m2

Sα

)
I4

(
M2
D,M

2
D,M

2
N ,m

2
S

)
=
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After integration
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(A.34)
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or
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In the Ref. [204] only the contribution proportional to λu is considered in the limit MN → 0 2,
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α

hiαhjα
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A.5 µ→ eγ process in the SDFDMmodel with real scalars singlets

The µ → eγ process in this model is shown in Fig. 3.2. In general, the radiative decay
f1(p1)→ f2(p2)γ(q), where, q = p1 − p2, f1 has a mass m1 and f2 has a mass m2 was computed
in the Ref. [205]. Here, we adapt their analysis to our model.

We take the fermions on shell, i.e. p2
1 = m2

1 and p2
2 = m2

2 and they are represented by spinors
u1 and u2, which satisfy the relations �p1u1 = m1u1 and ū2�p2 = m2ū2. The amplitude for the
decay is given by eε∗µ(q)Mµ, where ε∗µ(q) is the outgoing photon polarization and e is the electric
charge of the electron. We know that the gauge invariance implies that qµMµ must be zero.

2limx→0 x lnx = limx→0
lnx

1/x
= 0
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Therefore, Mµ has the form

Mµ = ū2(p2)(iσµνqν(σLPL + σRPR))u1(p1) , (A.36)

and the partial width for the process f1 → f2γ is given by

Γ =
(m2

1 −m2
2)3(|σL|2 + |σR|2)

16πm3
1

. (A.37)

With all this in mind, our work is determinate the σL and the σR factors in this model and use
the general Eq. (A.37) for the partial width of this process.

In general, for a Yukawa Lagrangian

LYukawa = BF (LiPL +RiPR)fi +B∗f i(L
∗
iPR +R∗iPL)F , (A.38)

where the fermions fi have charge Qf = e, the boson B have charge QB and the fermions fi have
interaction with the boson B and fermion F with arbitrary dimensionless numerical coefficients
Li and Ri, the σL and σR factors are given by

σL =Qf (ρk1 + λk2 + vk3) +QB(ρk1 + λk2 + vk3) (A.39)

σR =Qf (λk1 + ρk2 + ζk3) +QB(λk1 + ρk2 + ζk3) , (A.40)

where

λ =L+
2 L1 k1 = m1(c1 + d1 + f) k1 = m1(−c1 + d1 + f)

ρ =R∗2R1 k2 = m2(c2 + d2 + f) k2 = m2(−c2 + d2 + f)

ζ =L∗2R1 k3 = mF (c1 + c2) k3 = mF (−a+ c1 + c2)

v =R∗2L1 . (A.41)

σL and σR in SDFDM model

For our specify case, the Yukawa Lagrangian included in the Eq. 2.43 is given by

LSDFDM
Yukawa = hiαeLiψ

−
RSα + h.c = Sαψ−[hiαPL]ei + Sαei[hiαPR]ψ− . (A.42)

Therefore, we can do the next identification with the Lagrangian A.38

B → Sα Ri → 0 R∗i → hiα QB = 0

F → ψ− Li → hiα L∗i → 0 QF = 1

fi → ei

.

Replacing these factors in the Eq. (A.39) and Eq. (A.40) we get that

σL =eh2αh1αm1(c1 + d1 + f) = eh2αh1αm1(c1 +
3

2
d)

σR =eh2αh1αm2(c2 + d2 + f) = eh2αh1αm2(c2 +
3

2
d) ≈ 0 . (A.43)

87



A.5 µ→ eγ process in the SDFDM model with real scalars singlets

In the last equation, the relations d1 = d2 = 2f = d, and m1 = mµ � m2 = me were used.
According with the Ref. [205], the parameters ci = c and di = d are related with the loop

integrals as follows(
c+

3

2
d

)
=

i

16π2m2
B

[
x2 − 5x− 2

12(x− 1)3
+

x lnx

2(x− 1)4

]
=

i

16π2m2
B

1

2

[
x3 − 6x2 + 3x+ 2 + 6x lnx

6(x− 1)4

]
,

(A.44)

where x = m2
F /m

2
φ.

Finally, putting all this in the Eq. (A.43) we get the relations

σL =
ieh2αh1αmµ

16π2m2
B

1

2
F (x)

σR ≈0 , (A.45)

where

F (x) =

[
x3 − 6x2 + 3x+ 2 + 6x lnx

6(x− 1)4

]
with x =

M2
D

m2
Sα

. (A.46)

Branching (µ→ eγ)

Putting the Eq. (A.45) into the Eq. (A.37) we get

Γ =
(m2

µ −m2
e)

3

16πm3
µ

(|σL|2) ≈
m3
µ|σL|2
16π

=
m5
µ

16π

∣∣∣∣ eh1αh2α

16π2m2
Sα

F (x)

2

∣∣∣∣2 . (A.47)

Therefore, the branching ratio for this process is given by

Br(µ→ eγ) =
Γ(µ→ eγ)

Γ(µ→ eν̄eνµ)
=

m5
µ

16π

∣∣∣∣ eh1αh2α

16π2m2
Sα

F (x)
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Fm
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Sα
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=
3
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αem
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α
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Sα
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. (A.48)

In general, for a complex Yukawa coupling hiα we have,

Br(µ→ eγ) =
3

4

αem
16πG2

F

∣∣∣∣∣∑
α

h1α

F
(
M2
D/m

2
Sα

)
m2
Sα

h∗2α

∣∣∣∣∣
2

. (A.49)
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Appendix B

General details

B.1 Casas-Ibarra parametrization

It is known that when the structure of neutrino mass matrix has the form

Mν = Y T
ν ΛYν , (B.1)

we are able to find the Yukawa couplings Yν [157, 158]. In this section, we do a summary of how
they are obtained.

First of all, we know that the PMNS matrix U diagonalize the neutrino mass matrix, such
that UTMνU = diag(mν1,mν2,mν3) = Dmν , and second, we will work in the basis in which the
matrix Λ is diagonal, such that, Λ = DΛ = diag(Λ1,Λ2,Λ3). Therefore

Dmν = UTMνU =UTY T
ν ΛYνU = UTY T

ν DΛYνU = UTY T
ν D

√
ΛD
√

ΛYνU . (B.2)

Multiplying by D√
m−1
ν

to both sides, we get

D√
m−1
ν
D√mνD

√
m−1
ν

= 1 =
[
D√

m−1
ν
UTY T

ν D
√

Λ

] [
D√ΛYνUD

√
m−1
ν

]
=
[
D√ΛYνUD

√
m−1
ν

]T [
D√ΛYνUD

√
m−1
ν

]
. (B.3)

In general, the last equation means that[
D√ΛYνUD

√
m−1
ν

]
= R , (B.4)

is a 3×3 complex orthogonal rotation matrix characterized by three angles (Euler-angles: θ12, θ13, θ23).
Therefore, the Yukawa matrix Yν is given by

Yν = D√
Λ−1RD√mνU † , (B.5)

or

(Yν)αi =

√
mν1Rα1U

∗
i1 +
√
mν2Rα2U

∗
i2 +
√
mν3Rα3U

∗
i3√

Λα
. (B.6)

For the particular case of models with two particles circulating in the loop with associated
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B.2 Velocity averaged annihilation cross section 〈σv〉

Λ1 and Λ2 matrix elements (for instance, two scalar singlets in the SDFDM model), R can be
specified in terms of a single parameter [157,158] as

R =

1 cos θ sin θ

0 − sin θ cos θ

0 0 1

 , (B.7)

and therefore

(Yν)1i =

√
mν

2 cos θU∗i2 +
√
mν

3 sin θU∗i3√
Λ1

,

(Yν)2i =
−
√
mν

2 sin θU∗i2 +
√
mν

3 cos θU∗i3√
Λ2

. (B.8)

B.2 Velocity averaged annihilation cross section 〈σv〉

p1 p2

p3

p4

θ

Figure B.1: Two particles scattering in the center of mass frame.

It is known that for an scattering shown in Fig. B.1 the differential scattering cross section in
the center of mass frame is given by

dσ

dΩ
=

1

64π2s

[(
s− (m3 +m4)2

) (
s− (m3 −m4)2

)
(s− (m1 +m2)2) (s− (m1 −m2)2)

]1/2

|M|2 . (B.9)

The annihilation cross section σ(s), for WIMPs of mass m1 = m2 = m into to final states
with masses m3 and m4 is given in terms of the dimensional factor Σ which depend of the the
variables s, m, m3 and m4 as [206]

σ(s) =
1

32πm2

√
4m2

s

√
m2

s− 4m2

√
1− (m3 +m4)2

s

√
1− (m3 −m4)2

s
Σ(s;m,m2,m3) . (B.10)

where Σ(s;m,m2,m3) is given in terms of the matrix elementM by

Σ(s;m,m2,m3) =

∫
dΩ

4π

1

4

∑
s3s4

∑
r3,r4

|M|2 =

∫
dΩ

4π
|M|2 fermionic WIMPs (B.11)

=

∫
dΩ

4π

∑
r3,r4

|M|2 =

∫
dΩ

4π
|M|2 bosonic WIMPs , (B.12)
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where initial spins states s3, s4 are averaged over the fermionic WIMPs, and polarization r3, r4 of
the final states bosons are summed over. The integral in the solid angles has an extra factor of
1/2 if the two final state particles are identical, for example χχ→ γγ. We will use this expression
in order to compute the velocity averaged annihilation cross section 〈σv〉 for the DM annihilation
into γγ and γZ.

〈σvr〉 for DM annihilation into γγ

For the case of DM annihilation into two photons, χ0χ0 → γγ: m1 = m2 = m, m3 = m4 = 0,
s = (p1 + p2)2 = p2

1 + p2
2 + 2p1 · p2 = 4m2(1 + (vr/2)2) with vr the relative velocity of the DM

particles in the initial state. The scattering cross section (B.10) is

〈σvr〉 =
1

32πm2
|M|2

(
1− v2

r

8
+O(v4

r )

)
, (B.13)

where we show the s-wave and p-wave contribution explicitly. In the limit of zero velocity we have
the s-wave contribution

〈σvr〉|s-wave =
1

32πm2
|M|2 . (B.14)

NOTA: The natural units of 〈σvr〉 are E−2. In order to change to international unit system (MKS)
we use next the relations:

10−13cm =1fermi (fm) = 5.068 GeV−1 → 10−27cm2 = 2.56 GeV−2

1 sec =3× 1010cm

/hc =197.3 MeV fm = 197.3× 10−3GeV10−13cm = 197.3× 10−16GeV cm ,

therefore, if we wan to to change the units of the 〈σvr〉, we need to multiply for the factor:
(197.3× 10−16GeV cm)2(3× 108 × 102cm/sec).

B.3 Passarino-Veltman One-loop integrals

Figure B.2: General One-loop diagram. LoopTools’s convention [196].
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B.3 Passarino-Veltman One-loop integrals

The n-point tensor integral in the LoopTools’s convention [196] is given by:

TNµ1···µP (ki) =
µ4−D

iπD/2rΓ

∫
dDq

qµ1 · · · qµP
[q2 −m2

1][(q + k1)2 −m2
2] · · · [(q + kN−1)2 −m2

N ]
, (B.15)

with

rΓ =
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
D = 4− 2ε . (B.16)

The momenta ki that appear in the denominators are related to the external momenta pi as

p1 =k1 p2 = k2 − k1 · · · pN = kN − kN−1

k1 =p1 k2 = p1 + p2 · · · kN =

N∑
i=1

pi . (B.17)

In general, the LoopTools notation for the n-point integrals is: A = T 1, B = T 2, C = T 3 and
D = T 4. Therefore, regarding to the Eq. (B.15) we have that

A0;Aµ
(
m2
)

=
µ4−D

iπD/2rΓ

∫
dDq

1; qµ
[q2 −m2]

, (B.18)

B0;Bµ;Bµν
(
p2

1,m
2
1,m

2
2

)
=

µ4−D

iπD/2rΓ

∫
dDq

1; qµ; qµqν
[q2 −m2

1][(q + k1)2 −m2
2]
, (B.19)

C0;Cµ;Cµν ;Cµνρ
(
p2

1, p
2
2, (p1 + p2)2,m2

1,m
2
2,m

2
3

)
=

µ4−D

iπD/2rΓ

∫
dDq

1; qµ; qµqν ; qµqνqρ
[q2 −m2

1][(q + k1)2 −m2
2][(q + k2)2 −m2

3]
, (B.20)

D0;Dµ;Dµν ;Dµνρ;Dµνρσ

(
p2

1, p
2
2, p

2
3, p

2
4, (p1 + p2)2, (p2 + p3)2,m2

1,m
2
2,m

2
3,m

2
4

)
=

µ4−D

iπD/2rΓ

∫
dDq

1; qµ; qµqν ; qµqνqρ; qµqνqρqσ
[q2 −m2

1][(q + k1)2 −m2
2][(q + k2)2 −m2

3][(q + k3)2 −m2
4]
,

(B.21)

which are shown in Fig. B.3.

B.3.1 Tensor Coefficients

The integrals with a tensor structure can be reduced to integrals multiplied by linear combi-
nations of Lorentz-covariant tensors constructed from the metric tensor gµν and a linearly inde-
pendent set of the momenta [156] 1. LoopTools provides not the tensor integrals themselves,
but the coefficients of these Lorentz-covariant tensors. It works in a basis formed from gµν and
the momenta ki, which are the sums of the external momenta pi (see Eq. (B.3)) [207], with the

1The choice of this basis is not unique. For example, LoopTools chooses the basis of the ki momenta instead
the external momenta pi.
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Figure B.3: A, B, C and D point functions.

advantage that in this basis the tensor-coefficient functions are totally symmetric in their indices.

For the integrals up to the four-point function the decomposition reads explicitly as

Bµ = k1µB1 ,

Bµν = gµνB00 + k1µk1νB11 ,

Cµ = k1µC1 + k2µC2 =
2∑
i=1

kiµCi ,

Cµν = gµνC00 +

2∑
i,j=1

kiµkjνCij ,

Cµνρ =
2∑
i=1

(
gµνkiρ + gνρkiµ + gµρkiν

)
C00i +

2∑
i,j,`=1

kiµkjνk`ρCij` ,

Dµ =

3∑
i=1

kiµDi ,

Dµν = gµνD00 +
3∑

i,j=1

kiµkjνDij ,

Dµνρ =

3∑
i=1

(
gµνkiρ + gνρkiµ + gµρkiν

)
D00i +

3∑
i,j,`=1

kiµkjνk`ρDij` ,

Dµνρσ = (gµνgρσ + gµρgνσ + gµσgνρ)D0000

+
3∑

i,j=1

(
gµνkiρkjσ + gνρkiµkjσ + gµρkiνkjσ

+ gµσkiνkjρ + gνσkiµkjρ + gρσkiµkjν
)
D00ij

+
3∑

i,j,`,m=1

kiµkjνk`ρkmσDij`m .
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Of all scalar and tensor-coefficient functions, only A0, B0, B1, B00, B11, B001, B111, B′00, the C
coefficients with at least two indices zero, and the D coefficients with at least four indices zero are
actually UV divergent [196].

B.3.2 Conventions for the Momenta

A large source of mistakes is the way of specifying the momentums in the one-loop integrals.
The prime error in this respect is the confusion of the external momenta pi with the momenta ki
appearing in the denominators, which are the sums of the pi (see Eq. (B.3)). It is important to
realize that LoopTools functions like C1 and C112 are the coefficients respectively of k1µ and
k1µk1νk2ρ, not of p1µ and p1µp1νp2ρ.

B.3.3 C and D reduction to scalar integrals

The original Passarino-Veltman squema [156] is based in the assumption of independent ex-
ternal momenta pi. When the momenta are linearly dependent the Gram Determinant of the
momenta goes to zero and the Passarino-Veltmann scheme breaks down. In that case, we can deal
with this problem reducing the n-point integrals to a linear combination of (n− 1)-point integrals
as we will describe.

In general, the n-point scalar integral is:

TN0 (ki) =
µ4−D

iπD/2rΓ

∫
dDq

1

[q2 −m2
1][(q + k1)2 −m2

2] · · · [(q + kN−1)2 −m2
N ]

=
µ4−D

iπD/2rΓ

∫
dDq

1

N1N2 · · ·NN
, (B.22)

with

Ni =(q + ki−1)2 −m2
i , i = 1, · · ·N k0 = 0 . (B.23)

In the case of degeneration in the momenta, TN0 (ki) can be expanded by TN−1
0 (ki) in the next

form:

TN0 =
N∑
i=1

αi

(
µ4−D

iπD/2rΓ

∫
dDq

1

N1N2 · · ·Ni−1Ni+1 · · ·NN

)
=

N∑
i=1

αi T
N−1
0 (i) . (B.24)

In order to know the necessary condition to find the αi coefficients we can use the Eq. (B.22) and
(B.24). In means that we have to fulfill

1

N1N2 · · ·NN
=

α1

N2N3 · · ·NN
+

α2

N1N3 · · ·NN
+ · · ·+ αN

N1N2N3 · · ·NN−1
=

∑N
i=1 αiNi

N0N1 · · ·NN
,

(B.25)

94



Appendix B. General details

therefore

1 =
N∑
i=1

αiNi =
N∑
i=1

αi(q
2 + 2qµk

µ
i−1 + k2

i−1 −m2
i ) = q2

N∑
i=1

αi + 2qµ

N∑
i=1

αik
µ
i−1 +

N∑
i=1

αi(k
2
i−1 −m2

i ) .

(B.26)

Now, in order to satisfy this condition for all momenta qµ, we have to guarantee the next three
relations:

N∑
i=1

αi = 0
N∑
i=1

αiki−1 = 0
N∑
i=1

αi(k
2
i−1 −m2

i ) =1 . (B.27)

In particular, the second condition guaranteed that

α2k1 + α3k2 + α4k3 · · ·αNkN−1 = 0 . (B.28)

If the set of momenta {k1, k2 · · · kN−1} are (N − 1) linear independent, we will have the trivial
solution αi = 0 for all i. Now, in order to don’t have the trivial solution, the ki momenta must
be linearly dependent as the preliminary condition when the Passarino-Veltman scheme breaks
down.

The last scheme is general for reduce an n-point integral to a (n− 1)-point integral. We will
focus in the particular case of N = 3 and N = 4. For N = 3, the C scalar integral can be reduced
to B (N = 2) if you satisfied the next three relations

N∑
i=1

αi = 0 → α1 + α2 + α3 = 0 (B.29)

N∑
i=1

αiki−1 = 0 → α2k1 + α3k2 = α2p1 + α3(p1 + p2) = 0

⇒ α2p
2
1 + α3(p2

1 + p1 · p2) = α2p
2
1 + α3

(p2
1 − p2

2 + p2
3)

2
= 0 (B.30)

N∑
i=1

αi(k
2
i−1 −m2

i ) = 1 → −α1m
2
1 + α2(k2

1 −m2
2) + α3(k2

2 −m2
3)

= −α1m
2
1 + α2(p2

1 −m2
2) + α3(p2

3 −m2
3) = 1 , (B.31)

which are summary in the next system of equation: 1 1 1

0 p2
1 (p2

1 − p2
2 + p2

3)/2

−m2
1 (p2

1 −m2
2) (p2

3 −m2
3)


α1

α2

α3

 =

0

0

1

 . (B.32)

Explicitly, according to the Eq. (B.24)

T 3
0 =

(
µ4−D

iπD/2rΓ

∫
dDq

α1

N2N3

)
+

(
µ4−D

iπD/2rΓ

∫
dDq

α2

N1N3

)
+

(
µ4−D

iπD/2rΓ

∫
dDq

α3

N1N2

)
, (B.33)
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or equivalent:

C0(1, 2, 3) =α3B0(1, 2) + α2B0(1, 3) + α1B0(2, 3)

=α12B0(1, 2) + α13B0(1, 3) + α23B0(2, 3) , (B.34)

where C(i, j, k) means the three-point functions with denominator NiNjNk. The same for B(i, j).
Notice that we change the notation for the coefficients αi in order to get a more compact notation.

Analogously, for N = 4, the D scalar integrals can be reduced to C (N = 3) scalar integrals
and the coefficient can be found solving the next matrix equation

1 1 1 1

0 p2
1 (p2

1 − p2
2 + p2

5)/2 (p2
1 + p2

4 − p2
6)/2

0 (−p2
1 − p2

2 + p2
5)/2 (−p2

1 + p2
2 + p2

5)/2 (−p2
1 − p3

3 + p2
5 + p2

6)/2

−m2
1 p2

1 −m2
2 p2

5 −m2
3 p2

4 −m2
4



α234

α134

α124

α123

 =


0

0

0

1

 ,

(B.35)

with p5 = p1 + p2 and p6 = p2 + p3. The scalar reduction in this case is

D0(1, 2, 3, 4) = α123C0(1, 2, 3) + α124C0(1, 2, 4) + α134C0(1, 3, 4) + α234C0(2, 3, 4) . (B.36)

For the case of tensor reduction we have to take care that LoopTools works in the base of
the ki momenta as we described in the Sec. B.3.1. We are interested only in the reduction of the
four-point integrals Dµ, Dµν ,Dµνρ to three-point functions, because in general the three, two and
one-point functions have analytically representation that we are able to find.

For Dµ tensor we have

Dµ =

∫
dDq

qµ
[q2 −m2

1][(q + k1)2 −m2
2][(q + k2)2 −m2

3][(q + k3)2 −m2
4]

=

∫
dDq

qµ
[1][2][3][4]

=α123

∫
dDq

qµ
[1][2][3]

+ α124

∫
dDq

qµ
[1][2][4]

+ α134

∫
dDq

qµ
[1][3][4]

+ α234

∫
dDq

qµ
[2][3][4]

.

(B.37)

We omit the factor
µ4−D

iπD/2rΓ
in the last equation in order to have a more compact notation. To

continue, we have to take some care with the last integral. It does not have the canonical definition
of the three point functions because the first propagator has an external momenta k1 = p1. In
order to have the canonical definition, we can do a simple change of variable q + k1 → q

′

∫
dDq

qµ
[2][3][4]

=

∫
dDq

qµ
[(q + k1)2 −m2

2][(q + k2)2 −m2
3][(q + k3)2 −m2

4]

=

∫
dDq

(qµ − k1µ)

[q2 −m2
2][(q + (k2 − k1))2 −m2

3][(q + (k3 − k1))2 −m2
4]

=C̃µ(2, 3, 4)− k1µC̃0(2, 3, 4) , (B.38)

where the tilde means that we have to take care of the last shift in the propagator’s momenta.
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Replacing the Eq. (B.38) in the Eq. (B.37) and using the definition of the Cµ tensor, we have

Dµ =α123Cµ(1, 2, 3) + α124Cµ(1, 2, 4) + α134Cµ(1, 3, 4) + α234

(
C̃µ(2, 3, 4)− k1µC̃0(2, 3, 4)

)
.

(B.39)

Finally, using the definition of the tensor coefficients given in the Sec. B.3.1 we have that

Dµ =α123 (k1µC1(1, 2, 3) + k2µC2(1, 2, 3)) + α124 (k1µC1(1, 2, 4) + k3µC2(1, 2, 4))

+α134 (k2µC1(1, 3, 4) + k3µC2(1, 3, 4))

+α234

(
(k2µ − k1µ)C̃1(2, 3, 4) + (k3µ − k1µ)C̃2(2, 3, 4)− k1µC̃0(2, 3, 4)

)
. (B.40)

But for definition Dµ = k1µD1 + k2µD2 + k3µD3, therefore, doing the matching in the momenta
ki, we have the relation between the coefficients tensor of D and C functions

D0 =α123C0 + α124C0 + α134C0 + α234C̃0

D1 =α123C1 + α124C1 + 0 ∗ α134C1 − α234

(
C̃0 + C̃1 + C̃2

)
D2 =α123C2 + 0 ∗ α124C1 + α134C1 + α234C̃1

D3 =0 ∗ α123C1 + α124C2 + α134C2 + α234C̃2 , (B.41)

where we included the scalar reduction for D0 found before and a more compact notation αijkCl =

αijkCl(ijk).
Analogically, for Dµν tensor reduction we found

D00 =α123C00 + α124C00 + α134C00 + α234C̃00

D11 =α123C11 + α124C11 + 0 ∗ α134C1 + α234

(
C̃0 + 2C̃1 + 2C̃2 + C̃11 + 2C̃12 + C̃22

)
D12 =α123C12 + 0 ∗ α124C22 + 0 ∗ α134C22 − α234

(
C̃1 + C̃11 + C̃12

)
D13 =0 ∗ α123C12 + α124C12 + 0 ∗ α134C22 − α234

(
C̃12 + C̃2 + C̃22

)
D22 =α123C22 + 0 ∗ α124C1 + α134C11 + α234C̃11

D23 =0 ∗ α123C22 + 0 ∗ α124C1 + α134C12 + α234C̃12

D33 =0 ∗ α123C22 + α124C22 + α134C22 + α234C̃22 , (B.42)

and for D00i tensor reduction we found

D001 =α123C001 + α124C001 + 0 ∗ α134C00 − α234

(
C̃00 + C̃001 + C̃002

)
D002 =α123C002 + 0 ∗ α124C001 + α134C001 + α234C̃001

D003 =0 ∗ α123C00 + α124C002 + α134C002 + α234C̃002 . (B.43)

For another and complete reduction of the tensor n-point TNµ1···µP integrals but in another base,
see the Ref. [197]. For us, that scheme is not useful because we are working in the base of the
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momenta ki, that is not the base used in that work.

B.4 Non-linear Rξ gauges

B.4.1 Charged gauge bosons

In order to calculate the annihilation amplitude, we assume that the underlying model meets
conditions (i)-(vi). The third one in particular is not satisfied byW+ boson in ordinary Rξ gauges,
because of the presence of the interaction

L = eMW G+W−µAµ + h.c. (B.44)

The solution to this problem is to work in a different gauge. The gauge fixing term in the ordinary
Feynman gauge is given by Lgf = −f∗f with f = ∂µW

+µ − imWG
+ . If we work instead with

f = ∂µW
+µ − imWG

+ + ieAµW
+µ, we clearly cancel the interaction term in Eq. (B.44). In fact,

this procedure replaces such term by the following interactions between the W bosons and the
photons

δL = −e2AµAνW−µ W
+
ν + ieAµ(W+

µ ∂
νW−ν −W−µ ∂νW+

ν ) . (B.45)

This is the so-called Feynman non-linear gauge. The new gauge fixing term gives rise to the
following interactions between the Faddeev–Popov ghosts associated to the W± boson and pho-
tons [208]

L = −ieAµ
(
∂µc
−c+ − ∂µc+c−

)
−ieAµ

(
c+∂µc

− − c−∂µc+
)
− e2AµA

µ
(
c−c+ + c+c−

)︸ ︷︷ ︸
only present in the Feynman non-linear gauge

. (B.46)

Even though the expressions reported here are those associated to the W boson, they can be
generalized to any charged gauge boson by rescaling the electric charge. Because of that, for
arbitrary vector charged mediators φ, we assume that terms like Eq. (B.44) are not present, and
include Eq. (B.45) to their interactions with photons. Furthermore, we describe the corresponding
ghosts by means of Eq. (B.46).

B.4.2 Neutral gauge bosons in the s-channel

In this appendix, we show that when DM annihilates into two photons via a massive gauge
boson in the s-channel, the corresponding amplitude can be calculated by considering only the
associated Goldstone boson in the Landau gauge. This has been used in Ref. [209] in order to
calculate the contribution of the process qq → Z∗ → γγ to the SM background for a diphoton
signal. Here we generalize their arguments to an arbitrary neutral gauge boson and apply them
to DM annihilations.

Let us start by considering the off-shell decay of a vector particle into two photons φ0ρ(k)→
γµ(q)γν(q′). After stripping the polarization vectors, the most general decay amplitude, compat-
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ible with Bose statistics and Lorentz invariance, is given by

Mρµν = C1 (qνgµρ + q′µgνρ) + C2 k
ρgµν + C3 p

ρqνq′µ

+ C4 ε
ρµνα(q − q′)α +

(
C5k

ρεµναβ + C6(qνεµραβ − q′µενραβ
)
qαq′β) , (B.47)

where Ci are scalar functions. This expression can be simplified further in the center-of-mass
frame. First, there the photons move with opposite three-momentum and consequently their
polarization vectors not only satisfy q · ε = 0 and q′ · ε′ = 0 but also q′ · ε = 0 and q · ε′ = 0.
This makes C1, C3 and C6 irrelevant once Mρµν is contracted with the polarization vectors. In
addition, for the same reason, {k, q − q′, ε, ε′} is an orthogonal basis in the center-of-mass frame,
which can be used to prove that2 ερµναε∗µε′∗ν (q− q′)α = −kρεµναβε∗µε′∗ν qαq′β/q · q′, and consequently
that C4 can be absorbed into C5. We conclude that the amplitude is determined by

Mρµν = kρ
(
C2 g

µν + C5ε
µναβ qαq

′
β

)
. (B.48)

This is just a restatement of the Landau–Yang theorem [210, 211]. If the gauge boson is on
its mass-shell, its polarization vector ε(k) satisfies k · ε(k) = 0 and, according to the previous
equation, the decay amplitude vanishes. Furthermore, on an arbitrary Rξ gauge (linear or not),
the amplitude for the process DMDM→ φ0∗ → γγ is proportional to

(
gσρ +

(ξ − 1)kσkρ
k2 − ξm2

φ0

)
Mρµνε∗µε

′∗
ν = ξ kσ

(
k2 −m2

φ0

)(
C2 g

µν + C5ε
µναβ qαq

′
β

)
ε∗µε
′∗
ν

k2 − ξm2
φ0

. (B.49)

When the vector particle is on-shell, this expression vanishes as expected from the Landau–Yang
theorem. Most importantly, in the Landau gauge, ξ = 0, the expression vanishes even off-shell.
The decay of the gauge bosons into two photons is thus given only by the Goldstone boson
contribution. Since the latter is a massless scalar, we can calculate the annihilation amplitude by
applying the results presented in Sec. 5.3.2.

2Notice that this relation might not be true in an arbitrary frame because the photon polarization vectors are
not true four-vectors (for instance, their zero component vanishes in any frame).

99





Acknowledgements

I would like to thanks all the people that in some way have helped me with the elaboration of
this thesis.

First, I would like to thanks to my family. They are all that I have! My mom had always seen
me as a superstar, my nephews always spoiling my homework but in a good way, my grandma
always thinking that I am a mathematician, my brother and sister breaking their heads thinking
why I spend a lot of time doing these strange things and Julianita that has been the way and my
inspiration since she appeared on my way. All of them had encouraged me to follows this way
without stopping in the difficult moments that always are there no matter where you are.

I would like to thanks to my advisors, the professor Oscar Zapata N. and especially to the
professor Diego Alejandro Restrepo Q. for all the help, support, and amiability. He has been an
excellent advisor. Sometimes he has shown me the way in those dark days of the academy work,
discovering when I have been lost and pulling me when I have needed.

Although it is difficult to list them, I would like to thanks to all my friends. They always have
been there with a good hand extended for me without taking care of my bad mood. Especially, I
would like to thanks to the GFIF group. They have welcomed me and I have learned something
from all of them.

Finally, I would like to thanks to COLCIENCIAS (Doctorado Nacional-6172) and the Institute
of Physics at Universidad de Antioquia, the crazy place where I have spent a lot of time with the
propose of complete this puzzle.

Medellín, 2017

Andrés Felipe Rivera Romero

101





Bibliography

[1] P. A. R. Ade et al., “Planck 2015 results. XIII. Cosmological parameters,” 2015.

[2] E. W. Kolb and M. S. Turner, “The Early Universe,” Front. Phys., vol. 69, pp. 1–547, 1990.

[3] F. Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae,” Astrophys. J., vol. 86,
p. 217, oct 1937.

[4] G. Bertone and D. Hooper, “A History of Dark Matter,” Submitted to: Rev. Mod. Phys.,
2016.

[5] E. Corbelli and P. Salucci, “The Extended Rotation Curve and the Dark Matter Halo of
M33,” Mon. Not. Roy. Astron. Soc., vol. 311, pp. 441–447, 2000.

[6] S. Dodelson, Modern cosmology. San Diego, CA: Academic Press, 2003. [Online]. Available:
https://cds.cern.ch/record/1282338

[7] D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zarit-
sky, “A direct empirical proof of the existence of dark matter,” Astrophys. J., vol. 648, pp.
L109–L113, 2006.

[8] G. W. Angus, B. Famaey, and H. Zhao, “Can MOND take a bullet? Analytical comparisons
of three versions of MOND beyond spherical symmetry,” Mon. Not. Roy. Astron. Soc., vol.
371, p. 138, 2006.

[9] D. S. Akerib et al., “First spin-dependent WIMP-nucleon cross section limits from the LUX
experiment,” 2016.

[10] D. S. Akerib, “Results from a search for dark matter in the complete LUX exposure,” 2016.

[11] G. Bélanger, F. Boudjema, A. Pukhov, and A. Semenov, “The micromegas user’s manual,
version 4.1,” 2014.

[12] M. Ackermann et al., “Searching for Dark Matter Annihilation from Milky Way Dwarf
Spheroidal Galaxies with Six Years of Fermi-LAT Data,” 2015.

[13] “Fermi large area telescope,” http://www-glast.stanford.edu, accessed: 2014-02-20.

[14] S. Funk, “Space- and Ground-Based Gamma-Ray Astrophysics,” 2015.

[15] L. Goodenough and D. Hooper, “Possible Evidence For Dark Matter Annihilation In The
Inner Milky Way From The Fermi Gamma Ray Space Telescope,” ArXiv e-prints, Oct. 2009.

103

https://cds.cern.ch/record/1282338
http://www-glast.stanford.edu


BIBLIOGRAPHY

[16] V. Vitale, A. Morselli, and for the Fermi/LAT Collaboration, “Indirect Search for Dark
Matter from the center of the Milky Way with the Fermi-Large Area Telescope,” ArXiv
e-prints, Dec. 2009.

[17] D. Hooper and L. Goodenough, “Dark Matter Annihilation in The Galactic Center As Seen
by the Fermi Gamma Ray Space Telescope,” Phys.Lett., vol. B697, pp. 412–428, 2011.

[18] D. Hooper and T. Linden, “On The Origin Of The Gamma Rays From The Galactic Center,”
Phys.Rev., vol. D84, p. 123005, 2011.

[19] K. N. Abazajian and M. Kaplinghat, “Detection of a Gamma-Ray Source in the Galactic
Center Consistent with Extended Emission from Dark Matter Annihilation and Concen-
trated Astrophysical Emission,” Phys.Rev., vol. D86, p. 083511, 2012.

[20] K. N. Abazajian and M. Kaplinghat, “Erratum: Detection of a gamma-ray source in the
Galactic Center consistent with extended emission from dark matter annihilation and con-
centrated astrophysical emission [Phys. Rev. D 86, 083511 (2012)],” vol. 87, no. 12, p. 129902,
Jun. 2013.

[21] C. Gordon and O. Macias, “Dark Matter and Pulsar Model Constraints from Galactic Center
Fermi-LAT Gamma Ray Observations,” Phys.Rev., vol. D88, p. 083521, 2013.

[22] D. Hooper and T. R. Slatyer, “Two emission mechanisms in the Fermi Bubbles: A possible
signal of annihilating dark matter,” Physics of the Dark Universe, vol. 2, pp. 118–138, Sep.
2013.

[23] T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden, S. K. N. Portillo et al., “The Charac-
terization of the Gamma-Ray Signal from the Central Milky Way: A Compelling Case for
Annihilating Dark Matter,” ArXiv e-prints, 2014.

[24] F. Calore, I. Cholis, and C. Weniger, “Background model systematics for the Fermi GeV
excess,” JCAP, vol. 3, p. 38, Mar. 2015.

[25] M. Ajello et al., “Fermi-LAT Observations of High-Energy Gamma-Ray Emission Toward
the Galactic Center,” 2015.

[26] O. Macias and C. Gordon, “The Contribution of Cosmic Rays Interacting With Molecular
Clouds to the Galactic Center Gamma-Ray Excess,” Phys.Rev., vol. D, 2014.

[27] B. Zhou, Y.-F. Liang, X. Huang, X. Li, Y.-Z. Fan, L. Feng, and J. Chang, “GeV excess in
the Milky Way: The role of diffuse galactic gamma-ray emission templates,” vol. 91, no. 12,
p. 123010, Jun. 2015.

[28] T. A. Porter, S. Murgia, and for the Fermi LAT Collaboration, “Observations of High-Energy
Gamma-Ray Emission Toward the Galactic Centre with the Fermi Large Area Telescope,”
ArXiv e-prints, Jul. 2015.

[29] K. N. Abazajian, “The Consistency of Fermi-LAT Observations of the Galactic Center with
a Millisecond Pulsar Population in the Central Stellar Cluster,” JCAP, vol. 1103, p. 010,
2011.

104



BIBLIOGRAPHY

[30] R. S. Wharton, S. Chatterjee, J. M. Cordes, J. S. Deneva, and T. J. W.
Lazio, “Multiwavelength constraints on pulsar populations in the galactic center,”
The Astrophysical Journal, vol. 753, no. 2, p. 108, 2012. [Online]. Available:
http://stacks.iop.org/0004-637X/753/i=2/a=108

[31] C. Gordon and O. Macías, “Erratum: Dark matter and pulsar model constraints from
Galactic Center Fermi-LAT gamma-ray observations [Phys. Rev. D 88, 083521 (2013)],”
vol. 89, no. 4, p. 049901, Feb. 2014.

[32] N. Mirabal, “Dark matter versus pulsars: catching the impostor,” vol. 436, pp. 2461–2464,
Dec. 2013.

[33] Q. Yuan and B. Zhang, “Millisecond pulsar interpretation of the Galactic center gamma-ray
excess,” Journal of High Energy Astrophysics, vol. 3, pp. 1–8, Sep. 2014.

[34] T. D. Brandt and B. Kocsis, “Disrupted Globular Clusters Can Explain the Galactic Center
Gamma Ray Excess,” ArXiv e-prints, Jul. 2015.

[35] T. Lacroix, O. Macias, C. Gordon, P. Panci, C. Boehm, and J. Silk, “The Spatial Morphology
of the Secondary Emission in the Galactic Center Gamma-Ray Excess,” 2015.

[36] R. M. O’Leary, M. D. Kistler, M. Kerr, and J. Dexter, “Young and Millisecond Pulsar GeV
Gamma-ray Fluxes from the Galactic Center and Beyond,” 2016.

[37] R. M. O’Leary, M. D. Kistler, M. Kerr, and J. Dexter, “Young Pulsars and the Galactic
Center GeV Gamma-ray Excess,” ArXiv e-prints, Apr. 2015.

[38] D. Hooper, I. Cholis, T. Linden, J. M. Siegal-Gaskins, and T. R. Slatyer, “Millisecond
pulsars cannot account for the inner galaxy’s gev excess,” Phys. Rev. D, vol. 88, p. 083009,
Oct 2013. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevD.88.083009

[39] I. Cholis, D. Hooper, and T. Linden, “Challenges in explaining the Galactic Center gamma-
ray excess with millisecond pulsars,” JCAP, vol. 6, p. 43, Jun. 2015.

[40] J. Petrović, P. D. Serpico, and G. Zaharijas, “Millisecond pulsars and the Galactic Center
gamma-ray excess: the importance of luminosity function and secondary emission,” JCAP,
vol. 2, p. 23, Feb. 2015.

[41] S. K. Lee, M. Lisanti, B. R. Safdi, T. R. Slatyer, and W. Xue, “Evidence for Unresolved
Gamma-Ray Point Sources in the Inner Galaxy,” ArXiv e-prints, 2015.

[42] R. Bartels, S. Krishnamurthy, and C. Weniger, “Strong support for the millisecond pulsar
origin of the Galactic center GeV excess,” ArXiv e-prints, Jun. 2015.

[43] T. Linden, “Known Radio Pulsars Do Not Contribute to the Galactic Center Gamma-Ray
Excess,” ArXiv e-prints, Sep. 2015.

[44] S. K. Lee, M. Lisanti, B. R. Safdi, T. R. Slatyer, and W. Xue, “Evidence for Unresolved
Gamma-Ray Point Sources in the Inner Galaxy,” Phys. Rev. Lett., vol. 116, p. 051103, 2016.

105

http://stacks.iop.org/0004-637X/753/i=2/a=108
http://link.aps.org/doi/10.1103/PhysRevD.88.083009


BIBLIOGRAPHY

[45] R. Bartels, S. Krishnamurthy, and C. Weniger, “Strong support for the millisecond pulsar
origin of the Galactic center GeV excess,” Phys. Rev. Lett., vol. 116, p. 051102, 2016.

[46] E. Carlson and S. Profumo, “Cosmic Ray Protons in the Inner Galaxy and the Galactic
Center Gamma-Ray Excess,” ArXiv e-prints, 2014.

[47] J. Petrović, P. Dario Serpico, and G. Zaharijaš, “Galactic Center gamma-ray “excess” from
an active past of the Galactic Centre?” JCAP, vol. 10, p. 52, Oct. 2014.

[48] O. Macias, C. Gordon, R. M. Crocker, and S. Profumo, “Cosmic ray models of the ridge-like
excess of gamma rays in the Galactic Centre,” vol. 451, pp. 1833–1847, Aug. 2015.

[49] I. Cholis, C. Evoli, F. Calore, T. Linden, C. Weniger et al., “The Galactic Center GeV Excess
from a Series of Leptonic Cosmic-Ray Outbursts,” ArXiv e-prints, 2015.

[50] K. N. Abazajian, N. Canac, S. Horiuchi, and M. Kaplinghat, “Astrophysical and Dark
Matter Interpretations of Extended Gamma Ray Emission from the Galactic Center,” ArXiv
e-prints, 2014.

[51] M. Su, T. R. Slatyer, and D. P. Finkbeiner, “Giant Gamma-ray Bubbles from Fermi-LAT:
AGN Activity or Bipolar Galactic Wind?” Astrophys.J., vol. 724, pp. 1044–1082, 2010.

[52] M. Ackermann et al., “The Spectrum and Morphology of the Fermi Bubbles,” Astrophys.
J., vol. 793, no. 1, p. 64, 2014.

[53] H. E. Logan, “Dark matter annihilation through a lepton-specific Higgs boson,” Phys. Rev.,
vol. D83, p. 035022, 2011.

[54] M. R. Buckley, D. Hooper, and T. M. P. Tait, “Particle Physics Implications for CoGeNT,
DAMA, and Fermi,” Phys. Lett., vol. B702, pp. 216–219, 2011.

[55] G. Zhu, “WIMPless dark matter and the excess gamma rays from the Galactic center,”
Phys. Rev., vol. D83, p. 076011, 2011.

[56] G. Marshall and R. Primulando, “The Galactic Center Region Gamma Ray Excess from A
Supersymmetric Leptophilic Higgs Model,” JHEP, vol. 05, p. 026, 2011.

[57] M. S. Boucenna and S. Profumo, “Direct and Indirect Singlet Scalar Dark Matter Detection
in the Lepton-Specific two-Higgs-doublet Model,” Phys. Rev., vol. D84, p. 055011, 2011.

[58] M. R. Buckley, D. Hooper, and J. L. Rosner, “A Leptophobic Z’ And Dark Matter From
Grand Unification,” Phys. Lett., vol. B703, pp. 343–347, 2011.

[59] L. A. Anchordoqui and B. J. Vlcek, “W-WIMP Annihilation as a Source of the Fermi
Bubbles,” Phys. Rev., vol. D88, p. 043513, 2013.

[60] M. R. Buckley, D. Hooper, and J. Kumar, “Phenomenology of Dirac Neutralino Dark Mat-
ter,” Phys. Rev., vol. D88, p. 063532, 2013.

[61] K. Hagiwara, S. Mukhopadhyay, and J. Nakamura, “10 GeV neutralino dark matter and
light stau in the MSSM,” Phys. Rev., vol. D89, no. 1, p. 015023, 2014.

106



BIBLIOGRAPHY

[62] N. Okada and O. Seto, “Gamma ray emission in Fermi bubbles and Higgs portal dark
matter,” Phys. Rev., vol. D89, no. 4, p. 043525, 2014.

[63] W.-C. Huang, A. Urbano, and W. Xue, “Fermi Bubbles under Dark Matter Scrutiny Part
II: Particle Physics Analysis,” JCAP, vol. 1404, p. 020, 2014.

[64] K. P. Modak, D. Majumdar, and S. Rakshit, “A Possible Explanation of Low Energy γ-ray
Excess from Galactic Centre and Fermi Bubble by a Dark Matter Model with Two Real
Scalars,” JCAP, vol. 1503, p. 011, 2015.

[65] C. Boehm, M. J. Dolan, C. McCabe, M. Spannowsky, and C. J. Wallace, “Extended gamma-
ray emission from Coy Dark Matter,” JCAP, vol. 1405, p. 009, 2014.

[66] A. Alves, S. Profumo, F. S. Queiroz, and W. Shepherd, “Effective field theory approach to
the Galactic Center gamma-ray excess,” Phys. Rev., vol. D90, no. 11, p. 115003, 2014.

[67] A. Berlin, D. Hooper, and S. D. McDermott, “Simplified Dark Matter Models for the Galactic
Center Gamma-Ray Excess,” Phys. Rev., vol. D89, no. 11, p. 115022, 2014.

[68] P. Agrawal, B. Batell, D. Hooper, and T. Lin, “Flavored Dark Matter and the Galactic
Center Gamma-Ray Excess,” Phys. Rev., vol. D90, no. 6, p. 063512, 2014.

[69] E. Izaguirre, G. Krnjaic, and B. Shuve, “The Galactic Center Excess from the Bottom Up,”
Phys. Rev., vol. D90, no. 5, p. 055002, 2014.

[70] D. G. Cerdeño, M. Peiró, and S. Robles, “Low-mass right-handed sneutrino dark matter:
SuperCDMS and LUX constraints and the Galactic Centre gamma-ray excess,” JCAP, vol.
1408, p. 005, 2014.

[71] S. Ipek, D. McKeen, and A. E. Nelson, “A Renormalizable Model for the Galactic Center
Gamma Ray Excess from Dark Matter Annihilation,” Phys. Rev., vol. D90, no. 5, p. 055021,
2014.

[72] C. Boehm, M. J. Dolan, and C. McCabe, “A weighty interpretation of the Galactic Centre
excess,” Phys. Rev., vol. D90, no. 2, p. 023531, 2014.

[73] P. Ko, W.-I. Park, and Y. Tang, “Higgs portal vector dark matter for GeV scale γ-ray excess
from galactic center,” JCAP, vol. 1409, p. 013, 2014.

[74] M. Abdullah, A. DiFranzo, A. Rajaraman, T. M. P. Tait, P. Tanedo, and A. M. Wijangco,
“Hidden on-shell mediators for the Galactic Center γ-ray excess,” Phys. Rev., vol. D90, p.
035004, 2014.

[75] D. K. Ghosh, S. Mondal, and I. Saha, “Confronting the Galactic Center Gamma Ray Excess
With a Light Scalar Dark Matter,” JCAP, vol. 1502, no. 02, p. 035, 2015.

[76] A. Martin, J. Shelton, and J. Unwin, “Fitting the Galactic Center Gamma-Ray Excess with
Cascade Annihilations,” Phys. Rev., vol. D90, no. 10, p. 103513, 2014.

107



BIBLIOGRAPHY

[77] T. Mondal and T. Basak, “Class of Higgs-portal Dark Matter models in the light of gamma-
ray excess from Galactic center,” Phys. Lett., vol. B744, pp. 208–212, 2015.

[78] A. Berlin, P. Gratia, D. Hooper, and S. D. McDermott, “Hidden Sector Dark Matter Models
for the Galactic Center Gamma-Ray Excess,” Phys. Rev., vol. D90, no. 1, p. 015032, 2014.

[79] J. M. Cline, G. Dupuis, Z. Liu, and W. Xue, “The windows for kinetically mixed Z’-mediated
dark matter and the galactic center gamma ray excess,” JHEP, vol. 08, p. 131, 2014.

[80] T. Han, Z. Liu, and S. Su, “Light Neutralino Dark Matter: Direct/Indirect Detection and
Collider Searches,” JHEP, vol. 08, p. 093, 2014.

[81] W. Detmold, M. McCullough, and A. Pochinsky, “Dark Nuclei I: Cosmology and Indirect
Detection,” Phys. Rev., vol. D90, no. 11, p. 115013, 2014.

[82] L. Wang and X.-F. Han, “A simplified 2HDM with a scalar dark matter and the galactic
center gamma-ray excess,” Phys. Lett., vol. B739, p. 416, 2014.

[83] W.-F. Chang and J. N. Ng, “Minimal model of Majoronic dark radiation and dark matter,”
Phys. Rev., vol. D90, no. 6, p. 065034, 2014.

[84] C. Arina, E. Del Nobile, and P. Panci, “Dark Matter with Pseudoscalar-Mediated Interac-
tions Explains the DAMA Signal and the Galactic Center Excess,” Phys. Rev. Lett., vol.
114, p. 011301, 2015.

[85] C. Cheung, M. Papucci, D. Sanford, N. R. Shah, and K. M. Zurek, “NMSSM Interpretation
of the Galactic Center Excess,” Phys. Rev., vol. D90, no. 7, p. 075011, 2014.

[86] S. D. McDermott, “Lining up the Galactic Center Gamma-Ray Excess,” Phys. Dark Univ.,
vol. 7-8, pp. 12–15, 2014.

[87] J. Huang, T. Liu, L.-T. Wang, and F. Yu, “Supersymmetric subelectroweak scale dark
matter, the Galactic Center gamma-ray excess, and exotic decays of the 125 GeV Higgs
boson,” Phys. Rev., vol. D90, no. 11, p. 115006, 2014.

[88] C. Balázs and T. Li, “Simplified Dark Matter Models Confront the Gamma Ray Excess,”
Phys. Rev., vol. D90, no. 5, p. 055026, 2014.

[89] P. Ko and Y. Tang, “Galactic center γ-ray excess in hidden sector DM models with dark
gauge symmetries: local Z3 symmetry as an example,” JCAP, vol. 1501, p. 023, 2015.

[90] N. Okada and O. Seto, “Galactic Center gamma-ray excess from two-Higgs-doublet-portal
dark matter,” Phys. Rev., vol. D90, no. 8, p. 083523, 2014.

[91] K. Ghorbani, “Fermionic dark matter with pseudo-scalar Yukawa interaction,” JCAP, vol.
1501, p. 015, 2015.

[92] A. D. Banik and D. Majumdar, “Low Energy Gamma Ray Excess Confronting a Singlet
Scalar Extended Inert Doublet Dark Matter Model,” Phys. Lett., vol. B743, pp. 420–427,
2015.

108



BIBLIOGRAPHY

[93] D. Borah and A. Dasgupta, “Galactic Center Gamma Ray Excess in a Radiative Neutrino
Mass Model,” Phys. Lett., vol. B741, pp. 103–110, 2015.

[94] M. Cahill-Rowley, J. Gainer, J. Hewett, and T. Rizzo, “Towards a Supersymmetric Descrip-
tion of the Fermi Galactic Center Excess,” JHEP, vol. 02, p. 057, 2015.

[95] J. Guo, J. Li, T. Li, and A. G. Williams, “NMSSM explanations of the Galactic center
gamma ray excess and promising LHC searches,” Phys. Rev., vol. D91, no. 9, p. 095003,
2015.

[96] M. Freytsis, D. J. Robinson, and Y. Tsai, “Galactic Center Gamma-Ray Excess through a
Dark Shower,” Phys. Rev., vol. D91, no. 3, p. 035028, 2015.

[97] M. Heikinheimo and C. Spethmann, “Galactic Centre GeV Photons from Dark Technicolor,”
JHEP, vol. 12, p. 084, 2014.

[98] G. Arcadi, Y. Mambrini, and F. Richard, “Z-portal dark matter,” JCAP, vol. 1503, p. 018,
2015.

[99] F. Richard, G. Arcadi, and Y. Mambrini, “Searching for dark matter at colliders,” Eur.
Phys. J., vol. C75, p. 171, 2015.

[100] J. Cao, L. Shang, P. Wu, J. M. Yang, and Y. Zhang, “Supersymmetry explanation of the
Fermi Galactic Center excess and its test at LHC run II,” Phys. Rev., vol. D91, no. 5, p.
055005, 2015.

[101] N. F. Bell, S. Horiuchi, and I. M. Shoemaker, “Annihilating Asymmetric Dark Matter,”
Phys. Rev., vol. D91, no. 2, p. 023505, 2015.

[102] D. G. Cerdeno, M. Peiro, and S. Robles, “Fits to the Fermi-LAT GeV excess with RH
sneutrino dark matter: implications for direct and indirect dark matter searches and the
LHC,” Phys. Rev., vol. D91, no. 12, p. 123530, 2015.

[103] A. Achterberg, S. Amoroso, S. Caron, L. Hendriks, R. Ruiz de Austri, and C. Weniger, “A
description of the Galactic Center excess in the Minimal Supersymmetric Standard Model,”
JCAP, vol. 1508, no. 08, p. 006, 2015.

[104] G. Bertone, F. Calore, S. Caron, R. R. de Austri, J. S. Kim, R. Trotta, and C. Weniger,
“Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC
Run-II and astroparticle experiments,” 2015.

[105] K. Freese, A. Lopez, N. R. Shah, and B. Shakya, “MSSM A-funnel and the Galactic Center
Excess: Prospects for the LHC and Direct Detection Experiments,” 2015.

[106] N. Arkani-Hamed, S. Dimopoulos, and S. Kachru, “Predictive landscapes and new physics
at a TeV,” 2005.

[107] R. Mahbubani and L. Senatore, “The Minimal model for dark matter and unification,”
Phys.Rev., vol. D73, p. 043510, 2006.

109



BIBLIOGRAPHY

[108] F. D’Eramo, “Dark matter and Higgs boson physics,” Phys.Rev., vol. D76, p. 083522, 2007.

[109] R. Enberg, P. Fox, L. Hall, A. Papaioannou, and M. Papucci, “LHC and dark matter signals
of improved naturalness,” JHEP, vol. 0711, p. 014, 2007.

[110] B. Patt and F. Wilczek, “Higgs-field portal into hidden sectors,” 2006.

[111] C. Arbelaez, R. Longas, D. Restrepo, and O. Zapata, “Fermion dark matter from SO(10)
GUTs,” Phys. Rev., vol. D93, no. 1, p. 013012, 2016.

[112] N. Arkani-Hamed, T. Han, M. Mangano, and L.-T. Wang, “Physics Opportunities of a 100
TeV Proton-Proton Collider,” 2015.

[113] T. Cohen, J. Kearney, A. Pierce, and D. Tucker-Smith, “Singlet-Doublet Dark Matter,”
Phys.Rev., vol. D85, p. 075003, 2012.

[114] C. Cheung and D. Sanford, “Simplified Models of Mixed Dark Matter,” JCAP, vol. 1402, p.
011, 2014.

[115] T. Abe, R. Kitano, and R. Sato, “Discrimination of dark matter models in future experi-
ments,” 2014.

[116] L. Calibbi, A. Mariotti, and P. Tziveloglou, “Singlet-Doublet Model: Dark matter searches
and LHC constraints,” JHEP, vol. 10, p. 116, 2015.

[117] A. Freitas, S. Westhoff, and J. Zupan, “Integrating in the Higgs Portal to Fermion Dark
Matter,” JHEP, vol. 09, p. 015, 2015.

[118] J. Abdallah et al., “Simplified Models for Dark Matter Searches at the LHC,” Phys. Dark
Univ., vol. 9-10, pp. 8–23, 2015.

[119] S. Gori, S. Jung, L.-T. Wang, and J. D. Wells, “Prospects for Electroweakino Discovery at
a 100 TeV Hadron Collider,” JHEP, vol. 12, p. 108, 2014.

[120] E. K. Akhmedov, “Neutrino physics,” in Proceedings, Summer School in Particle
Physics: Trieste, Italy, June 21-July 9, 1999, 1999, pp. 103–164. [Online]. Available:
http://alice.cern.ch/format/showfull?sysnb=2173287

[121] D. Forero, M. Tortola, and J. Valle, “Neutrino oscillations refitted,” Phys.Rev., vol. D90,
no. 9, p. 093006, 2014.

[122] S. Weinberg, “Baryon- and lepton-nonconserving processes,” Phys. Rev. Lett., vol. 43, pp.
1566–1570, Nov 1979. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.
43.1566

[123] F. Bonnet, M. Hirsch, T. Ota, and W. Winter, “Systematic study of the d=5 Weinberg
operator at one-loop order,” JHEP, vol. 1207, p. 153, 2012.

[124] E. Ma, “Verifiable radiative seesaw mechanism of neutrino mass and dark matter,”
Phys.Rev., vol. D73, p. 077301, 2006.

110

http://alice.cern.ch/format/showfull?sysnb=2173287
http://link.aps.org/doi/10.1103/PhysRevLett.43.1566
http://link.aps.org/doi/10.1103/PhysRevLett.43.1566


BIBLIOGRAPHY

[125] S. P. Martin, “TASI 2011 lectures notes: two-component fermion notation and supersym-
metry,” 2012.

[126] S. Horiuchi, O. Macias, D. Restrepo, A. Rivera, O. Zapata, and H. Silverwood, “The Fermi-
LAT gamma-ray excess at the Galactic Center in the singlet-doublet fermion dark matter
model,” JCAP, vol. 1603, no. 03, p. 048, 2016.

[127] P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, and G. Weiglein, “Probing the Standard
Model with Higgs signal rates from the Tevatron, the LHC and a future ILC,” JHEP, vol. 11,
p. 039, 2014.

[128] S. Schael et al., “Precision electroweak measurements on the Z resonance,” Phys. Rept., vol.
427, pp. 257–454, 2006.

[129] M. E. Peskin and T. Takeuchi, “Estimation of oblique electroweak corrections,” Phys. Rev.
D, vol. 46, pp. 381–409, Jul 1992. [Online]. Available: http://link.aps.org/doi/10.1103/
PhysRevD.46.381

[130] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, “micrOMEGAs4.1: two dark
matter candidates,” 2014.

[131] K. Griest and D. Seckel, “Three exceptions in the calculation of relic abundances,” Phys.
Rev., vol. D43, pp. 3191–3203, 1991.

[132] N. D. Christensen and C. Duhr, “FeynRules - Feynman rules made easy,” Comput. Phys.
Commun., vol. 180, pp. 1614–1641, 2009.

[133] F. Staub, T. Ohl, W. Porod, and C. Speckner, “A Tool Box for Implementing Supersym-
metric Models,” Comput.Phys.Commun., vol. 183, pp. 2165–2206, 2012.

[134] F. Staub, “SARAH,” 2008.

[135] ——, “SARAH 4: A tool for (not only SUSY) model builders,” Comput.Phys.Commun., vol.
185, pp. 1773–1790, 2014.

[136] D. S. Akerib et al., “First results from the LUX dark matter experiment at the Sanford
Underground Research Facility,” Phys. Rev. Lett., vol. 112, p. 091303, 2014.

[137] P. A. R. Ade et al., “Planck 2013 results. XVI. Cosmological parameters,” Astron. Astrophys.,
vol. 571, p. A16, 2014.

[138] T. Hahn, “Generating Feynman diagrams and amplitudes with FeynArts 3,” Comput. Phys.
Commun., vol. 140, pp. 418–431, 2001.

[139] M. G. Aartsen, R. Abbasi, Y. Abdou, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers,
D. Altmann, J. Auffenberg, X. Bai, and et al., “Search for Dark Matter Annihilations in
the Sun with the 79-String IceCube Detector,” Physical Review Letters, vol. 110, no. 13, p.
131302, Mar. 2013.

111

http://link.aps.org/doi/10.1103/PhysRevD.46.381
http://link.aps.org/doi/10.1103/PhysRevD.46.381


BIBLIOGRAPHY

[140] C. Amole et al., “Improved Dark Matter Search Results from PICO-2L Run-2,” Submitted
to: Phys. Rev. D, 2016.

[141] ——, “Dark Matter Search Results from the PICO-60 CF3I Bubble Chamber,” Submitted
to: Phys. Rev. D, 2015.

[142] LUX Collaboration and D. S. Akerib, “First results from the LUX dark matter experiment
at the Sanford Underground Research Facility,” ArXiv e-prints, Oct. 2013.

[143] P. Cushman et al., “Working Group Report: WIMP Dark Matter Direct Detection,”
in Community Summer Study 2013: Snowmass on the Mississippi (CSS2013)
Minneapolis, MN, USA, July 29-August 6, 2013, 2013. [Online]. Available: http:
//inspirehep.net/record/1262767/files/arXiv:1310.8327.pdf

[144] V. Silveira and A. Zee, “SCALAR PHANTOMS,” Phys.Lett., vol. B161, p. 136, 1985.

[145] J. McDonald, “Gauge singlet scalars as cold dark matter,” Phys.Rev., vol. D50, pp. 3637–
3649, 1994.

[146] C. Burgess, M. Pospelov, and T. ter Veldhuis, “The Minimal model of nonbaryonic dark
matter: A Singlet scalar,” Nucl.Phys., vol. B619, pp. 709–728, 2001.

[147] S. M. Boucenna, S. Morisi, and J. W. Valle, “The low-scale approach to neutrino masses,”
Adv.High Energy Phys., vol. 2014, p. 831598, 2014.

[148] N. G. Deshpande and E. Ma, “Pattern of Symmetry Breaking with Two Higgs Doublets,”
Phys.Rev., vol. D18, p. 2574, 1978.

[149] R. Barbieri, L. J. Hall, and V. S. Rychkov, “Improved naturalness with a heavy Higgs: An
Alternative road to LHC physics,” Phys.Rev., vol. D74, p. 015007, 2006.

[150] E. Ma, “Pathways to naturally small neutrino masses,” Phys.Rev.Lett., vol. 81, pp. 1171–
1174, 1998.

[151] D. Aristizabal Sierra, A. Degee, L. Dorame, and M. Hirsch, “Systematic classification of
two-loop realizations of the Weinberg operator,” JHEP, vol. 1503, p. 040, 2015.

[152] D. Restrepo, O. Zapata, and C. E. Yaguna, “Models with radiative neutrino masses and
viable dark matter candidates,” JHEP, vol. 1311, p. 011, 2013.

[153] S. S. Law and K. L. McDonald, “A Class of Inert N-tuplet Models with Radiative Neutrino
Mass and Dark Matter,” JHEP, vol. 1309, p. 092, 2013.

[154] T. Toma and A. Vicente, “Lepton Flavor Violation in the Scotogenic Model,” JHEP, vol.
1401, p. 160, 2014.

[155] A. Vicente and C. E. Yaguna, “Probing the scotogenic model with lepton flavor violating
processes,” JHEP, vol. 1502, p. 144, 2015.

[156] G. Passarino and M. Veltman, “One Loop Corrections for e+ e- Annihilation Into mu+ mu-
in the Weinberg Model,” Nucl.Phys., vol. B160, p. 151, 1979.

112

http://inspirehep.net/record/1262767/files/arXiv:1310.8327.pdf
http://inspirehep.net/record/1262767/files/arXiv:1310.8327.pdf


BIBLIOGRAPHY

[157] J. A. Casas and A. Ibarra, “Oscillating neutrinos and muon —> e, gamma,” Nucl. Phys.,
vol. B618, pp. 171–204, 2001.

[158] A. Ibarra and G. G. Ross, “Neutrino phenomenology: The Case of two right-handed neu-
trinos,” Phys.Lett., vol. B591, pp. 285–296, 2004.

[159] Z. Maki, M. Nakagawa, and S. Sakata, “Remarks on the unified model of elementary parti-
cles,” Prog.Theor.Phys., vol. 28, pp. 870–880, 1962.

[160] W. Porod, F. Staub, and A. Vicente, “A Flavor Kit for BSM models,” Eur.Phys.J., vol. C74,
no. 8, p. 2992, 2014.

[161] J. Adam et al., “New constraint on the existence of the µ+ → e+γ decay,” Phys.Rev.Lett.,
vol. 110, p. 201801, 2013.

[162] G. Aad et al., “Search for direct production of charginos, neutralinos and sleptons in final
states with two leptons and missing transverse momentum in pp collisions at

√
s = 8 TeV

with the ATLAS detector,” JHEP, vol. 1405, p. 071, 2014.

[163] W. Beenakker, R. Hopker, and M. Spira, “PROSPINO: A Program for the production of
supersymmetric particles in next-to-leading order QCD,” 1996.

[164] J. M. Cline, K. Kainulainen, P. Scott, and C. Weniger, “Update on scalar singlet dark
matter,” Phys.Rev., vol. D88, p. 055025, 2013.

[165] U. Chattopadhyay, D. Choudhury, M. Drees, P. Konar, and D. Roy, “Looking for a heavy
Higgsino LSP in collider and dark matter experiments,” Phys.Lett., vol. B632, pp. 114–126,
2006.

[166] M. Klasen, C. E. Yaguna, J. D. Ruiz-Alvarez, D. Restrepo, and O. Zapata, “Scalar dark
matter and fermion coannihilations in the radiative seesaw model,” JCAP, vol. 1304, p. 044,
2013.

[167] G. Servant and T. M. Tait, “Is the lightest Kaluza-Klein particle a viable dark matter
candidate?” Nucl.Phys., vol. B650, pp. 391–419, 2003.

[168] K. Kong and K. T. Matchev, “Precise calculation of the relic density of Kaluza-Klein dark
matter in universal extra dimensions,” JHEP, vol. 0601, p. 038, 2006.

[169] F. Burnell and G. D. Kribs, “The Abundance of Kaluza-Klein dark matter with coannihila-
tion,” Phys.Rev., vol. D73, p. 015001, 2006.

[170] J. Edsjo, M. Schelke, P. Ullio, and P. Gondolo, “Accurate relic densities with neutralino,
chargino and sfermion coannihilations in mSUGRA,” JCAP, vol. 0304, p. 001, 2003.

[171] S. Profumo and A. Provenza, “Increasing the neutralino relic abundance with slepton coan-
nihilations: Consequences for indirect dark matter detection,” JCAP, vol. 0612, p. 019,
2006.

113



BIBLIOGRAPHY

[172] W. Porod and F. Staub, “SPheno 3.1: Extensions including flavour, CP-phases and models
beyond the MSSM,” Comput.Phys.Commun., vol. 183, pp. 2458–2469, 2012.

[173] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, “MicrOMEGAs 2.0: A Program
to calculate the relic density of dark matter in a generic model,” Comput.Phys.Commun.,
vol. 176, pp. 367–382, 2007.

[174] N. Arkani-Hamed, A. Delgado, and G. Giudice, “The Well-tempered neutralino,” Nucl.Phys.,
vol. B741, pp. 108–130, 2006.

[175] H. Silverwood, C. Weniger, P. Scott, and G. Bertone, “A realistic assessment of the CTA
sensitivity to dark matter annihilation,” JCAP, vol. 1503, no. 03, p. 055, 2015.

[176] E. Baltz, B. Berenji, G. Bertone, L. Bergstrom, E. Bloom et al., “Pre-launch estimates for
GLAST sensitivity to Dark Matter annihilation signals,” JCAP, vol. 0807, p. 013, 2008.

[177] L. Bergstrom, P. Ullio, and J. H. Buckley, “Observability of gamma-rays from dark matter
neutralino annihilations in the Milky Way halo,” Astropart.Phys., vol. 9, pp. 137–162, 1998.

[178] C. Rott, “Review of Indirect WIMP Search Experiments,” Nucl.Phys.Proc.Suppl., vol. 235-
236, pp. 413–420, 2013.

[179] J. F. Navarro, C. S. Frenk, and S. D. White, “A Universal density profile from hierarchical
clustering,” Astrophys.J., vol. 490, pp. 493–508, 1997.

[180] F. Iocco, M. Pato, G. Bertone, and P. Jetzer, “Dark Matter distribution in the Milky Way:
microlensing and dynamical constraints,” JCAP, vol. 1111, p. 029, 2011.

[181] M. Cirelli, G. Corcella, A. Hektor, G. Hütsi, M. Kadastik, P. Panci, M. Raidal, F. Sala, and
A. Strumia, “PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect
detection,” JCAP, vol. 3, p. 51, Mar. 2011.

[182] T. Sjostrand, S. Mrenna, and P. Z. Skands, “A Brief Introduction to PYTHIA 8.1,” Comput.
Phys. Commun., vol. 178, pp. 852–867, 2008.

[183] R. Catena and P. Ullio, “A novel determination of the local dark matter density,” JCAP,
vol. 1008, p. 004, 2010.

[184] F. Acero et al., “Fermi Large Area Telescope Third Source Catalog,” 2015.

[185] P. Agrawal, B. Batell, P. J. Fox, and R. Harnik, “WIMPs at the Galactic Center,” JCAP,
vol. 1505, p. 011, 2015.

[186] F. Calore, I. Cholis, C. McCabe, and C. Weniger, “A Tale of Tails: Dark Matter Interpre-
tations of the Fermi GeV Excess in Light of Background Model Systematics,” Phys. Rev.,
vol. D91, no. 6, p. 063003, 2015.

[187] M. Actis et al., “Design concepts for the Cherenkov Telescope Array CTA: an advanced facil-
ity for ground-based high-energy gamma-ray astronomy,” Experimental Astronomy, vol. 32,
pp. 193–316, Dec. 2011.

114



BIBLIOGRAPHY

[188] L. Bergstrom and P. Ullio, “Full one loop calculation of neutralino annihilation into two
photons,” Nucl. Phys., vol. B504, pp. 27–44, 1997.

[189] J. H. Kuhn, J. Kaplan, and E. G. O. Safiani, “Electromagnetic Annihilation of e+ e- Into
Quarkonium States with Even Charge Conjugation,” Nucl. Phys., vol. B157, pp. 125–144,
1979.

[190] L. Bergstrom, T. Bringmann, M. Eriksson, and M. Gustafsson, “Two photon annihilation
of Kaluza-Klein dark matter,” JCAP, vol. 0504, p. 004, 2005.

[191] K. Fujikawa, “Xi-limiting process in spontaneously broken gauge theories,” Phys. Rev.,
vol. D7, pp. 393–398, 1973.

[192] J. Heeck and S. Patra, “Minimal Left-Right Symmetric Dark Matter,” Phys. Rev. Lett., vol.
115, no. 12, p. 121804, 2015.

[193] C. Garcia-Cely and J. Heeck, “Phenomenology of left-right symmetric dark matter,” 2015,
[JCAP1603,021(2016)].

[194] G. Tavares-Velasco and J. J. Toscano, “Bilepton gauge boson contribution to the static
electromagnetic properties of the W boson in the minimal 331 model,” Phys. Rev., vol. D65,
p. 013005, 2002.

[195] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, “FeynRules 2.0 - A
complete toolbox for tree-level phenomenology,” Comput. Phys. Commun., vol. 185, pp.
2250–2300, 2014.

[196] T. Hahn and M. Perez-Victoria, “Automatized one loop calculations in four-dimensions and
D-dimensions,” Comput. Phys. Commun., vol. 118, pp. 153–165, 1999.

[197] R. G. Stuart, “Algebraic reduction of one-loop feynman diagrams to scalar integrals,”
Computer Physics Communications, vol. 48, no. 3, pp. 367 – 389, 1988. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0010465588902020

[198] H. H. Patel, “Package-X: A Mathematica package for the analytic calculation of one-loop
integrals,” Comput. Phys. Commun., vol. 197, pp. 276–290, 2015.

[199] A. Ibarra, T. Toma, M. Totzauer, and S. Wild, “Sharp Gamma-ray Spectral Features from
Scalar Dark Matter Annihilations,” Phys. Rev., vol. D90, no. 4, p. 043526, 2014.

[200] M. Duerr, P. Fileviez Pérez, and J. Smirnov, “Scalar Dark Matter: Direct vs. Indirect
Detection,” JHEP, vol. 06, p. 152, 2016.

[201] M. El Kheishen, A. Aboshousha, and A. Shafik, “Analytic formulas for the neutralino masses
and the neutralino mixing matrix,” Phys.Rev., vol. D45, pp. 4345–4348, 1992.

[202] A. Pich, “The Standard model of electroweak interactions,” in 2004 European School of
High-Energy Physics, Sant Feliu de Guixols, Spain, 30 May - 12 June 2004, 2005, pp. 1–48.
[Online]. Available: http://doc.cern.ch/yellowrep/2006/2006-003/p1.pdf

115

http://www.sciencedirect.com/science/article/pii/0010465588902020
http://doc.cern.ch/yellowrep/2006/2006-003/p1.pdf


BIBLIOGRAPHY

[203] D. Suematsu and T. Toma, “Dark matter in the supersymmetric radiative seesaw model
with an anomalous U(1) symmetry,” Nucl.Phys., vol. B847, pp. 567–589, 2011.

[204] S. Fraser, E. Ma, and O. Popov, “Scotogenic Inverse Seesaw Model of Neutrino Mass,”
Phys.Lett., vol. B737, pp. 280–282, 2014.

[205] L. Lavoura, “General formulae for f(1) —> f(2) gamma,” Eur. Phys. J., vol. C29, pp. 191–
195, 2003.

[206] J.-Y. Chen, E. W. Kolb, and L.-T. Wang, “Dark matter coupling to electroweak gauge and
Higgs bosons: an effective field theory approach,” Phys. Dark Univ., vol. 2, pp. 200–218,
2013.

[207] A. Denner, “Techniques for calculation of electroweak radiative corrections at the one loop
level and results for W physics at LEP-200,” Fortsch. Phys., vol. 41, pp. 307–420, 1993.

[208] J. Pasukonis, “Implementation of non-linear gauge-fixing in FeynArts package,” Ph.D.
dissertation, Vilnius U., 2007. [Online]. Available: http://inspirehep.net/record/762568/
files/arXiv:0710.0159.pdf

[209] S. Moretti, “Variations on a Higgs theme,” Phys. Rev., vol. D91, no. 1, p. 014012, 2015.

[210] L. D. Landau, “On the angular momentum of a system of two photons,” Dokl. Akad. Nauk
Ser. Fiz., vol. 60, no. 2, pp. 207–209, 1948.

[211] C.-N. Yang, “Selection Rules for the Dematerialization of a Particle Into Two Photons,”
Phys. Rev., vol. 77, pp. 242–245, 1950.

116

http://inspirehep.net/record/762568/files/arXiv:0710.0159.pdf
http://inspirehep.net/record/762568/files/arXiv:0710.0159.pdf


Abbreviations

BAO Baryon acoustic oscillation
CDM Cold dark matter
CMB Cosmic microwave background
CTA Cherenkov telescope array
DM Dark matter
EW Electroweak
EWPO Electroweak precision observables
FCNC Flavor changing neutral currents
GUT Gran unified theory
GDE Gamma diffuse emission
GC Galactic center
GCE Galactic center excess
ICS Inverse Compton scattering
ILC International linear collider
IH Inverse hierarchy
LHC Large hadron collider
LUX Large underground Xenon experiment
LEP Large Electron-Positron Collider
LFV Lepton flavor violation
LOP Lightest odd particle
LAT Large area telescope
LZ LUX-Zeplin experiment
MSM Millisecond pulsar
MSSM Minimal supersymmetry standard model
NLO Next to leading-order
NH Normal hierarchy
NFW Navarro-Frenk-White
SDFDM Singlet-doublet fermion dark matter
SSDM Singlet scalar dark matter
SI Spin independent
SD Spin independent
SM Standard model
WIMP Weakly interacting massive particle
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