
ercesiMIPS Lab Report
Lab1 Single Cyclic CPU with 7-9(11) MIPS Instructions

Name: Firstname Lastename
StudentID: xxxxxx

Class#: xxxxx

CS 11007 Computer Organization and Architecture
(Spring, 2017)

Northwestern Polytechnical University, China
Faculty of Computer Science

ERCESI

1st May 2017

1

Abstract

Please enter the abstract here, just summary your lab works.

2

Copyright Statement

The copyright law of China governs the making of photocopies or other reproduc-
tions of copyrighted material. All right reserved. No portion of this document
may be photocopied and reproduced without written permission from ERCESI
(NWPU) except by a reviewer who may quote brief passages in connection with
a citation.

ERCESI Reserves the right to refuse a copying order if, in its judgment, ful-
fillment of the order would involve violation of copyright law.If a user makes
a request for, or later uses, a photocopy or reproduction without a writtern
permission from ERCESI, the user may be liable for copyright infringement.

3

Contents
1 Overview 5

2 System Design 6
2.1 System Overview . 6
2.2 Interface Definition . 6
2.3 (Sequential) Logic of Interface . 6

3 Blocks Design 6
3.1 ALU . 8

3.1.1 Function . 8
3.1.2 Interface Definition . 8
3.1.3 Logic Design . 8

3.2 Control Unit . 8
3.2.1 Function . 8
3.2.2 Interface Definition . 8
3.2.3 Logic Design . 8

3.3 Data Path . 8
3.3.1 Function . 8
3.3.2 Interface Definition . 8
3.3.3 Logic Design . 8

4 Lab Records 8

A Code 8

4

1 Overview
The structure of Single cyclic MIPS CPU has been introduced in CS 11007 class
lecture.

• Supported Instructions includes sub, add, or, ori, lw, sw, lst, beq, j, or
adding addi, and, andi for better programming experience in assembly. All
these instructions can be supported without exception detecting (overflow
detecting)

• All instructions work in one cycle. For the very beginning stage,
Single Cyclic CPU model is a great example to explain how CPU works.

• Consisted of Data Path, Control Unit and Memory Unit. To
illustrate the typical systematic idea of computer, we recommend you
design your first CPU with two separated modules, CPath and DPath,
in such coding style, both blocks can also be easily verified separately.
Additionally, if more complement MIPS ISA is chosen, this structure will
be high efficient to be extended.

• Chisel3 is also recommended. Chisel is a powerful structural hardware
description language, with more efficient expression for block, operation,
and IO bundles compared with Verilog. However, the most significant
feature of Chisel is that it can express the structure of system without
detailed circuits coding. Further more, we prefer Chisel3 instead of Chisel2,
which relies on verilator for verilog simulations instead of Synopsys vcs.
The difference between these tow versions can be referenced here: https:
//github.com/ucb-bar/chisel3/wiki/Chisel3-vs-Chisel2.

5

https://github.com/ucb-bar/chisel3/wiki/Chisel3-vs-Chisel2
https://github.com/ucb-bar/chisel3/wiki/Chisel3-vs-Chisel2

2 System Design

2.1 System Overview
Please describe your CPU system design here, Figures are recommended for
detailed illustration and add the figure using latex could be reference the insertion
of Fig. 1. If you need cite a reference like this [1], and a sample bibliography

Data
Out

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd

A
L

U

Clk

Data
In

Data
Address Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction
Memory

C
lk

PC

5
Rs

5
Rt

32

32
3232

A

B

N
ex

t A
dd

re
ss

Control

Datapath

Control Signals Conditions

Figure 1: Single Cyclic CPU Block Diagram

item is attached at the end.

2.2 Interface Definition
In this section, the interfaces among the blocks of top level should be described
in details. Tables can be used in latex as this. Table 1

2.3 (Sequential) Logic of Interface
Please define the logic of interfaces of your top level. Figures and tables also
will be helpful for expressing ideas in academic style.

3 Blocks Design
This section is for detailed introduction of block function, interface definition,
logic implementation (FSM design), etc. for every single block.

6

Table 1: Signals Definition for Test Mode

Signal Name Direction Width Function
boot Input 1-bit Trigger the boot test mode, set to 0 in

CPU regular process mode
test_im_wr Input 1-bit Instruction memory write enable in test

mode,set to 0 in CPU regular process
mode. In test mode, it will be set to
1 when if writing instructions to imem,
otherwise it is set to 0.

test_im_re Input 1-bit Instruction memory read enable in test
mode,set to 0 in CPU regular process
mode. In test mode, it will be set to 1
when if reading instructions out, other-
wise it is set to 0.

test_im_addr Input 32-bit Instruction memory address
test_im_in Input 32-bit Instruction memory data input for test

mode.
test_im_out Output 32-bit Instruction memory data output for test

mode.
test_dm_wr Input 1-bit Data memory write enable in test

mode,set to 0 in CPU regular process
mode. In test mode, it will be set to 1
when if writing data to dmem, otherwise
it is set to 0.

test_dm_re Input 1-bit Data memory read enable in test
mode,set to 0 in CPU regular process
mode. In test mode, it will be set to 1
when if reading data out, otherwise it is
set to 0.

test_dm_addr Input 32-bit Data memory address
test_dm_in Input 32-bit Data memory input for test mode.
test_dm_out Output 32-bit Data memory output for test mode.
valid Output 1-bit If CPU stopped or any exception hap-

pens, valid signal is set to 0.

7

3.1 ALU
3.1.1 Function

3.1.2 Interface Definition

3.1.3 Logic Design

3.2 Control Unit
3.2.1 Function

3.2.2 Interface Definition

3.2.3 Logic Design

3.3 Data Path
3.3.1 Function

3.3.2 Interface Definition

3.3.3 Logic Design

4 Lab Records
The whole lab process, all design events, problems and relevant solutions are
described here. Name your Subsections according to demand.

Appendix A Code
Please add your code with Scala syntax highlight support like below.This is app
A

class TopIO extends Bundle() {
val boot = Input(Bool())

// imem and dmem interface for Tests
val test_im_wr = Input(Bool())
val test_im_rd = Input(Bool())
val test_im_addr = Input(UInt(32.W))
val test_im_in = Input(UInt(32.W))
val test_im_out = Output(UInt(32.W))

val test_dm_wr = Input(Bool())
val test_dm_rd = Input(Bool())
val test_dm_addr = Input(UInt(32.W))
val test_dm_in = Input(UInt(32.W))
val test_dm_out = Output(UInt(32.W))

val valid = Output(Bool())
}
class Top extends Module() {
val io = IO(new TopIO())//in chisel3, io must be wrapped in IO(...)
//...
when (io.boot & io.test_im_wr){
imm(io.test_im_addr) := io.test_im_in
} .elsewhen (io.boot & io.test_dm_wr){
// please finish it
} //...

}

8

References
[1] P. Erdős, A selection of problems and results in combinatorics, Recent trends

in combinatorics (Matrahaza, 1995), Cambridge Univ. Press, Cambridge,
2001, pp. 1–6.

9

	Overview
	System Design
	System Overview
	Interface Definition
	(Sequential) Logic of Interface

	Blocks Design
	ALU
	Function
	Interface Definition
	Logic Design

	Control Unit
	Function
	Interface Definition
	Logic Design

	Data Path
	Function
	Interface Definition
	Logic Design

	Lab Records
	Code

