# Honours Analysis Skills Example Presentation Template

**Richard Gratwick** 

University of Edinburgh

## Uniform convergence

### Definition

A sequence of functions  $f_n \colon \mathbb{R} \to \mathbb{R}$  converges uniformly to a function  $f \colon \mathbb{R} \to \mathbb{R}$  if for all  $\epsilon > 0$  there exists an  $N \in \mathbb{N}$  such that  $n \ge N$  implies

$$\sup_{x\in\mathbb{R}}|f_n(x)-f(x)|<\epsilon.$$

## Uniform convergence

#### Definition

A sequence of functions  $f_n \colon \mathbb{R} \to \mathbb{R}$  converges uniformly to a function  $f \colon \mathbb{R} \to \mathbb{R}$  if for all  $\epsilon > 0$  there exists an  $N \in \mathbb{N}$  such that  $n \ge N$  implies

$$\sup_{x\in\mathbb{R}}|f_n(x)-f(x)|<\epsilon.$$

### Pointwise and uniform continuity

- Uniform convergence implies pointwise convergence
- Pointwise convergence does not imply uniform convergence

## Uniform convergence

#### Definition

A sequence of functions  $f_n \colon \mathbb{R} \to \mathbb{R}$  converges uniformly to a function  $f \colon \mathbb{R} \to \mathbb{R}$  if for all  $\epsilon > 0$  there exists an  $N \in \mathbb{N}$  such that  $n \ge N$  implies

$$\sup_{x\in\mathbb{R}}|f_n(x)-f(x)|<\epsilon.$$

### Pointwise and uniform continuity

- Uniform convergence implies pointwise convergence
- Pointwise convergence does not imply uniform convergence

#### Theorem

Let  $f_n \colon \mathbb{R} \to \mathbb{R}$  be continuous and converge uniformly to  $f \colon \mathbb{R} \to \mathbb{R}$ . Then f is continuous.

# Uniform convergence and continuity

### Proof.

Let  $x \in \mathbb{R}$  and let  $\epsilon > 0$ . There exists  $N \in \mathbb{N}$  such that  $n \ge N$  implies

$$\sup_{x\in\mathbb{R}}|f_n(x)-f(x)|<\frac{\epsilon}{3}.$$
(1)

There exists  $\delta > 0$  such that

$$|f_N(x) - f_N(y)| < rac{\epsilon}{3}$$
 whenever  $|x - y| < \delta.$  (2)

Then inequalities (1) and (2) imply that whenever  $|x - y| < \delta$ , we have

$$\begin{split} |f(x) - f(y)| &\leq |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)| \\ &\leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} \\ &= \epsilon. \end{split}$$

People

#### This subject owes much to





Figure: Augustin-Louis Cauchy

#### Figure: Karl Weierstrass