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This document describes how to use the el-author.cls file and how to
format your LATEXsubmissions correctly for Electronics Letters. It also
serves as a template, so that you can simply copy the text from this
example .tex file and replace it with your own. We have tried to cover
the basic tools and commands you might need, but there may be some
more unusual fields, etc, not described. Do not hesitate to contact us if
you encounter any problems. The structure is as follows: we introduce
the basic notations and preamble, and then provide some example text,
followed by the references. For simplicity we have left the source code
out of this document and refer the reader to the sample.tex file itself,
from which to copy and paste.

Introduction: el-author.cls is used in a similar fashion to the
standard article.cls file. However, the el-author.cls file must
be copied into the same directory as the .tex file you wish to compile
for submission. Most of the preamble needed for including packages for
mathematics or for displaying images is included within the .cls file
itself, whereas more exotic packages will have to be included manually.

If you prefer to review your document in single column format
or double spaced you can include this in the options of the
document class with the command - inside the square brackets -
[doublespace, onecolumn].

Tables are straightforward to include (check the .tex file for details),
and will format automatically:

Table 1: Coefficients and remainders for distribution KK (k= 0.05, v= 3,
c1 = 1.5, c2 = 4.5)
n a2

n rk(1)
0 3.602576748428 1.493719547999
1 1.384791111989 0.108928436101
2 0.108600438794 0.000327997399
3 0.000275794597 0.000052202814
4 0.000027616892 0.000024585922
5 0.000018178621 0.000006407300

Note that we used [h] after the \begin{table} command to force
the table to be included exactly at that location. The same can be done for
all tables and figures:

Fig. 1. The Keldysh contour before extension of the real axis to infinity

In the next section we provide a short example manuscript,
which includes images and their captions. In sample.tex we have
added some comments explaining how to use \source{...}
to include subcaptions, and how to format equations over
more than one line. For more information on submitting
and Electronics Letters house style, see the author guide at
http://www.theiet.org/resources/journals/eletters/authors.cfm.

Kondo effect in new places: With poor man’s scaling [1] and the success
of the Bethe ansatz, the equilibrium Kondo effect has become something
of a solved problem (Anderson’s withering remarks concerning the Bethe
ansatz notwithstanding). However, there are two situations where it is
not properly understood. The Kondo lattice is of particular interest in the
heavy fermion compounds, and is far beyond the scope of the current
work, and we refer the reader to [2] and references therein. Similarly, the
case where the Kondo impurity is not in a metal but a superconductor, is
not dealt with in the present work. Of interest are non-equilibrium effects,
and this is typically realized in quantum dots.

In the typical quantum dot set-up, as described in the introduction, the
dot weakly connects together two electron seas, the leads. It is understood

Fig. 2 Quantum dot resistance for T � TK and T � TK

For high temperatures (dashed line) the Coulomb blockade remains
For lower temperatures (solid line) the Coulomb blockade is overcome

that the phenomenon of the Coulomb blockade limits conductance
through the dot unless the charge induced on the dot by the gate is

Q=

(
N +

1

2

)
e (1)

Consequently, we find sharp peaks in the conductance of the dot at these
degeneracy points. However, for T < TK new behaviour is observed, as
in Fig. 2. The original conduction peaks of figure of the classic Coulomb
blockade exist when the occupancy is effectively half integer. Hence,
we expect at integer occupancy suppression of the conductance. This is
indeed observed if N is even. However, for T < TK and N odd, we see
that the conductance is not fully suppressed. The difference is clear: for
even occupancy, the spin of the dot will be zero, as there will be as many
up as down electrons. However, for odd filling, the N + 1th electron will
contribute a spin-half, causing the dot to behave as a Kondo-like impurity.
We will discuss what consequences the Kondo-nature of the dot has, but
first we will explain exactly how it acquires this nature.

The Schrieffer-Wolff transformation: To set up the non-equilibrium
Kondo problem - formally - we introduce the two-channel Anderson
Hamiltonian

H2C =
∑
αkσ

εαk ĉ
†
αkσ ĉαkσ + Ud̂†↑d̂↑d̂

†
↓d̂↓

+
∑
σ

εdd̂
†
σ d̂σ +

∑
αkσ

[tαĉ
†
αkσ d̂σ + h.c.] (2)

The subscript α is the channel label, for the dot case left and right. The
physical idea is that the dot is already at half-integer occupancy. The
Hubbard U is recognized as the charging energy (the energy required
to add another electron) which we assume to be much larger than the
mean level spacing in the dot, so that we may consider only one level,
εd. The hybridization, tα is the tunneling energy through the potential
barriers connecting the dot to the leads, and is assumed to be point like.
It is clear that the dot behaves exactly as the original Anderson impurity
model, with the addition of lead indices, and this Hamiltonian has been
studied perturbatively. However, the Schrieffer-Wolff transformation can
be performed exactly as before:

H2K =
∑
αkσ

εαk ĉ
†
αkσ ĉαkσ +

∑
αβστ

t∗αtβ

U︸ ︷︷ ︸
Jαβ

ĉ†ασ(r= 0)σaστ ĉβτ (r= 0)Sa

(3)

In the following we will assume that the coupling to the left and right
leads is identical, Jαβ , we may perform the sum over leads, giving

H2K =
∑
αkσ

εαk ĉ
†
αkσ ĉαkσ + J{[ĉ†Lσ(r= 0) + ĉ†Rσ(r= 0)]

×σaστ [ĉLτ (r= 0) + ĉRτ (r= 0)]}Sa (4)

Some Simple Results for Two Leads: If we assume that the kinetic term
takes the same form for the left lead as the right lead (in equilibrium),
a simple (Bogoliubov) rotation of basis will transform H2K into the
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standard one channel Kondo model:

Ĥ1
2K =

∑
k

εk ĉ
†
αkσ ĉαkσ + J

∑
α

ŝ(0) · Ŝ (5)

such that the new Hamiltonian is diagonal in the lead index, and so
α behaves as an additional degeneracy. This procedure is justified if
we wish to perturbatively analyze the conductance of the dot. For
bias voltages, V much lower than the Kondo temperature, this seems
reasonable, as the only true energy scale for the Kondo model is TK .

Given that Ĥ1
2K is diagonal in lead index, the same techniques as are

used for the equilibrium case apply. Indeed, performing the poor man’s
scaling procedure and using Fermi’s golden rule, it is straightforward to
recover the result, for T � TK :

G1 ∼G0ν0J

G0 ∼ ln2(T/Tk) (6)

A full and more careful treatment, recovers the numerical factors:

G1 =
2e2

h

4ΓLΓR

(ΓL + ΓR)2
3π2/16

ln2(T/Tk)

≡G0
3π2/16

ln2(T/Tk)
(7)

We emphasize that this is valid only for T � TK � V .
At temperatures below TK , the coupling diverges, so that the dominant

term in equation (5) is

Ĥcoup = J
∑
α

ŝ(0) · Ŝ (8)

As was discussed for the one channel problem, the ground state is a
singlet, with zero spin, and we expect the scattering in the dot to be
suppressed, and so to leading order, the the conductance reduces to
G2 =G0. Perturbative corrections have been found, [3], which yield

G2 =G0

[
1−

(
πT

TK

)2
]

(9)

Thus, we can define two regions for the conductance, both for V � TK :

G1 =G0
3π2/16

ln2(T/Tk)
, T � TK

G2 =G0, T � TK
(10)

So, we see that as we lower the temperature below TK , for an odd-integer
Coulomb blockade valley, the conductance is no longer exponentially
suppressed.

As we have stressed, these results are valid only for V � TK . The next
step is to introduce an arbitrary voltage via the kinetic term in equation
(5):

Ĥ1
2K =

∑
kσ

(εk − eV )ĉ†Lkσ ĉLkσ +
∑
kσ

εk ĉ
†
Rkσ ĉRkσ + J

∑
α

ŝ(0) · Ŝ

(11)

If we assume that V � T , we can again divide into two regions:

G̃=

{
G̃1, V � TK
G̃2, V � TK

(12)

Here, the previous work is based on the idea that eV now plays the same
role as temperature. That is, in the R.G. flow, we cut at eV , and the
perturbation analysis of [3] is now for low voltage, so we find

G̃1 =G0
3π2/16

ln2(eV/Tk)

G̃2 =G0

[
1−

(
πeV

TK

)2
]

(13)

However, we argue that the approximations used are not entirely
reasonable. From the work of N. d’Ambrumenil and B. Muzykantskii,
on the non-equilibrium x-ray problem (to which the Kondo problem can
be related), it is not sufficient to decouple the leads, rotate basis and
then simply reintroduce the voltage. It is clear (in the very least as a
precaution), that a full treatment of the true two lead Kondo Hamiltonian
of equation (4) is required. With this in mind, in the next chapter, we will

be following the calculation of Anderson, Yuval and Hamann, in which
they map the Kondo Hamiltonian onto a two dimensional Coulomb gas.

Conclusion: We have derived some results for the two lead Kondo
problem in various limits. We have shown the suppression of the
Coulomb blockade, and observed that this suppression can be viewed as
a kind of delocalisation caused by the Kondo singlet across the dot. The
above treatment required us to neglect the bias potential and then to rotate
our two lead problem to a diagonal basis. However, it is not clear that this
is a controlled or reasonable approach. In fact, the presence of voltage in
the non-diagonal Green’s function of related x-ray problems implies that
the voltage cannot be treated perturbatively, and that a generalisation of
non-eequilibrium Riemann-Hilbert techniques may be necessary.
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