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ABSTRACT

High-speed rail transportation requires careful design of a rail track. The design of a railway

track is governed by the load-bearing capacity and maximum possible speed of transporta-

tion. The capacity of a high-speed rail tracks is generally limited by its critical speed. It is

the speed at which the vibration occurs at the largest magnitude. Thus, its identification is

necessary to prevent derailments and damage to the rail tracks.
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Chapter 1

Introduction

1.1 General

The technological developments and the reach of accessibility have put more pressure on

rail and road transportation. Specifically, rail transportation has seen a surge in passenger

volumes as predicted by Ramanathan and Parikh (1999) by 2.5 folds in last two decades.

1.2 Details of ballasted rail track

Most railway tracks in India and the world are constructed by first finishing the ground

(subgrade), then laying over the subballast and ballast layers, followed by placement of the

sleepers connected with the rails.
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Figure 1.1: A typical ballasted rail track (Width of layers change with track gauge)
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1.3 Ballastless (slab) rail track and their comparison with ballasted tracks

The life cycle cost of slab track will become lower than the traditional ballasted rail track

after 25 years (Michas, 2012). A typical cross-section of a ballastless rail track based on

German Rheda rail track is shown in Figure 1.2 while the differences between ballasted and

ballastless railway tracks are mentioned in Table 1.1.
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Figure 1.2: A typical ballastless rail track (Width of layers change with track gauge)

Table 1.1: Comparison between ballasted and ballastless tracks (Esveld, 2001; Michas, 2012)

S No. Ballasted track Ballastless track

1 Frequent maintenance Less maintenance

2 Relatively low construction costs but

higher life cycle cost

Relatively high construction cost but

lower life cycle cost

3 High elasticity due to ballast Elasticity is achieved via rubber pads

and other artificial materials

4 Poor Life expectancy (15-20 yrs) Good Life expectancy (50-60 yrs)

5 Relatively High noise Relatively low noise and vibration nui-

sance



1.4 Methods of railway track analysis 3

6 Ballast fouling at high speeds, causing

damage to rails and wheels

No such damage to rails and wheels

7 Ballast is relatively heavy, thus in-

creased cost on bridges and viaducts

Less cost of construction of bridges and

viaducts due to lower dead weight of

the ballastless track

8 Depth of ballasted track is relatively

high, which require large tunnel diam-

eters

Reduced height

9 Reduced permeability due to fouling High impermeability

10 Release of dust from the ballast causing

environmental pollution

Less environment pollution

1.4 Methods of railway track analysis

There are several methods to study the dynamic responses of railway track.

1.5 Objectives of the present study

The main purpose of present study is to perform a dynamic load analysis of rail tracks with

the objectives as listed below:

1. To develop a methodology which can identify the critical behaviour of a ballasted rail

track as well as ballastless rail track using a three-dimensional finite element ballasted

track model under moving load.

2. To assess and scrutinize the existing dynamic impact factor formulations given in

literature and suggest a new formulation based on finite element analysis.
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1.6 Thesis organisation

The thesis is organized as follows:

1. Chapter 1: This chapter initiates the thesis by discussing about the increasing demand

of high-speed railways and articulating the emerging transportation systems.

2. Chapter 2: This chapter deals with the literature studied based on different objectives.

3. Chapter 3: This chapter explains the finite element analysis adopted for the determi-

nation of critical speed of a ballasted rail track.

4. Chapter 4: This chapter deals with the analysis of geosynthetic reinforced earth (GRE)

embankments supporting railway track subjected to moving load.

5. Chapter 5: This chapter explains the moving load finite element analysis on ballastless

railway track, specifically, on embedded track system placed over cohesive subgrade.

6. Chapter 6: This chapter outlines the major conclusions drawn from the present study.



Chapter 2

Literature review

The literature survey conducted in the present study covers detailed mechanisms for analysing

the dynamic responses of a rail track system. The literature survey chapter is divided into

sections based on the objectives stated in Chapter 1. The sections were further divided based

on the type of procedures adopted, i.e., mathematical modelling; simulation of rail track ge-

ometry using a numerical method (FEM, DEM, FDM); laboratory prototype testing; and

field testing.

2.1 Literature on determination of critical speed of railway tracks

The critical speed, similar to the resonant frequency for a structure, causes the highest

vibrations in a railway track structure.

2.1.1 Laboratory models and field observations of railway tracks

Quinn et al. (2010) reported the results of an investigation into the mechanical and aerody-

namic forces acting on ballast particles that are generated during the passage of a high-speed

train and addresses the question whether these might offer a possible explanation for the

5



2.1 Literature on determination of critical speed of railway tracks 6

initiation of ballast flight.

Figure 2.1: Images from Sol-Sánchez et al. (2016) (a) the box used for the study, (b) the
compaction of a sandy layer to simulate the subgrade, (c) and a control of the
compaction of granular layers.

In addition, Sol-Sánchez et al. (2016) performed a lab experiment (Figure 2.1) on dis-

tinct sections of track for evaluating the impact of different types of elastic components

having diverse properties, different kinds of subballast, and varied ballast layer thicknesses.

The results of the study showed that lowering the track’s stiffness by adjusting the elastic

elements above the ballast surface enhances the efficiency of the track to attenuate energy

and lower the settlement.

2.1.2 Beam on elastic foundation approach of railway tracks analysis

The most widely used method for railway track analysis in the literature is the beam on

elastic foundation (BOEF) mechanism. The primary approach is to simplify the railway
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track as the BOEF (the Euler-Bernoulli or Timoshenko beam equation) to calculate its

critical speed. There are different mathematical approaches based on BOEF model, which

can be represented by Eq. 2.1 (Kumawat et al., 2019). Eq. 2.1 represents the effect of wheel

load on a beam (rail) placed on the elastic foundation (ballast, subballast, and subgrade)

(Mallik et al., 2006).

p(x, t) = ESIS
∂4w

∂x4
+ q(x, t) + ρS

∂2w

∂t2
+ cS

∂w

∂t
(2.1)

Where w (x,t) is the beam’s transverse deflection (m); x is the space coordinate assessed

along the beam length (m); t denotes the time (s); IS represents the rotational inertia about

the neutral axis of the beam cross-section (m4); ES is the modulus of elasticity material

(N/m2); q (x,t) represents reaction through ballast to the beam (N/m); ρS is the mass/unit

beam length (kg/m); p (x,t) is the common time-dependent distributed vertical load (N/m)

that acts on the beam; and cS denotes the viscous damping coefficient per/unit beam length

(N.s/m2).

2.1.3 Dispersion spectrum analysis of railway tracks

Sheng et al. (2003) compared the theoretical ground vibration model (Figure 2.2) utilizing

the ThompsonHaskell method as an effective method for soil dispersion graph computation

with measured data at three locations. The model included both quasi-static and dynamic

excitation mechanisms. A semi-analytical approach to a 3D layered ground is coupled to

the dynamics of various vehicles traveling at a constant speed on an infinite track.

Zhai et al. (2015) measured ground vibration in the field on the Beijing to Shanghai high-

speed railway line in China. The obtained measurements of vertical ground accelerations
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Figure 2.2: Models of vehicle (left) and track-ground system (right) from Sheng et al. (2003)

generated due to very high-speed trains traveling at speeds ranging from 300-410 km/h on

a ballastless track over an embankment are noted and thoroughly analysed. The test data

is used to examine the attributes of ground accelerations in both the frequency and time

domains.

2.1.4 Finite element simulation models of ballasted railway tracks

The inclusion of plasticity and three-dimensional geometry is possible with finite element

modelling, thus, it will be a better method to estimate the critical speed. Most modern

researchers employ the finite element method (FEM) with dynamic loading to estimate

critical speed. Literature shows two-dimensional (Nsabimana and Jung, 2015) as well as

three-dimensional (Hall, 2003; Banimahd et al., 2013; Chen and Zhou, 2018; Li et al., 2018)

rail track models for dynamic loading. The two-dimensional rail track models can not rep-

resent limited width layers (e.g., sleepers, ballast, and subballast). Based on the objectives,

FEM studies use purely elastic material models for track structure Feng (2011); Bian et al.

(2016); Tang et al. (2019) or elastoplastic material (Chen and Zhou, 2018; Li et al., 2018).

The elastic material models are generally adopted for ballastless (slab) tracks as the defor-
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mations occur mostly in the elastic range. The elastoplastic materials are best to represent

the granular materials in ballasted tracks.

2.2 Literature on dynamic impact factors of railway tracks

Railway tracks due to a movable load encounter a dynamic influence that can be expressed

in terms of dynamic impact factor (DIF), one of the most important design parameters

for railway tracks. The DIF summarises the dynamic impacts of moving load, wheel-rail

interaction, and track irregularities altogether. The dynamic or quasi-static load (Fdyn) at

a specified speed is divided by the static or stationary wheel load (Fsta) to get the DIF as

shown in Eq. 2.2.

DIF =
Fdyn

Fsta

(2.2)

To assess DIF, numerous railway organizations and codes suggest empirical correlations

(Van Dyk et al., 2017; Doyle, 1980), as shown in Table 2.1.

The evaluation and verification of DIF formulas utilising field measurements and math-

ematical modelling by Gu et al. (2008) and Gu and Franklin (2010) were done at low-speed

ranges of about 40-50 km/h. Thus, its scrutiny at higher speeds is the need of the hour. In

the literature, the simulation-based methodology to DIF evaluation is almost non-existent.
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Table 2.1: DIF formulations from literature

Source DIF
Indian Railways
(Srinivasan, 1969) 1 + V

58.14
√
U

South African Railways
(Doyle, 1980) 1 + 4.92V

D

Clarke
(Doyle, 1980) 1 + 19.65V

D
√
U

AREA
(Hay, 1982) 1 + 5.21V

D

German Railways
(Schramm, 1961) 1 + V 2

3×104

WMATA
(Prause et al., 1974) (1 + 0.00003862V 2)

2
3

Eisenmann
(Esveld, 2001) 1 + δη′t

Note: V is speed (km/h), D is wheel diameter (mm), U
is track modulus (MPa), δ is coefficient related to track
maintenance parameter, η′ is speed-dependent coefficient
and t is a statistical parameter



Chapter 3

Conclusions and suggestions for future research
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