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Abstract—Commonly employed storm tracking algo-
rithms do not use information on the subsequent positions
of a storm because it is not available at the time that
associations between frames are carried out, but post-
event analysis is not similarly constrained. Therefore,
it should be possible to obtain better tracks for post-
event analysis than what a real-time algorithm is capable
of. In this paper, we describe a statistical procedure to
determine storm tracks from a set of identified storm cells
over time. We find that this procedure results in fewer,
longer-lived tracks at all scales.

I. MOTIVATION

Even though storm tracking methods such as the
Storm Cell Identification and Tracking Algorithm
(SCIT [1]), Thunderstorm Identification, Tracking and
Nowcasting (TITAN [2]) and Segmentation-Motion Es-
timation (w2segmotion [3], [4]) are constrained to work
in a purely causal fashion, these algorithms have been
widely employed by the meteorological research com-
munity to carry out case studies and formulate spatio-
temporal relationships, for example by [5], [6], [7], [8].

Using a storm tracking algorithm that is constrained
to work in real-time to carry out post-event analysis is
sub-optimal. There is more information (about which
cells persist and the direction in which they move) that
is available if the entire set of storm cell identifications
over the complete dataset is used to determine thun-
derstorm tracks. In this paper, we describe a way of
clustering a set of storm cell identifications over time
into trajectories where a trajectory is the line (or curve)
that best fits the position of an individual storm cell
over time.

This work was carried out in order to improve spa-
tiotemporal relationships between radar-derived storm
characteristics and the subsequent onset of specific
weather hazards such as cloud-to-ground lightning, hail
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and tornadoes [9]. Such hazard probabilities can be
derived from storm attributes using the method of [4]
on a multi-year reanalysis dataset created as described
in [10], but the reliability and skill of these probabilities
is limited by the quality of the storm tracks used to train
the data mining algorithms.

II. METHOD

Given a cluster of storm cells (xt, yt) at multiple
times, the best constant-speed straight-line trajectory
fit u, v for the cluster is the best fit slope of the line
that connects the points in the cluster. [11] introduced
a non-parametric, rank-invariant method for obtaining
the best-fit slope in a dataset whereby one computes
the median of the slopes of every pair of sample
points. [12] modified the definition so that the median
is computed only of points at different times (t2 6= t1).
Once the median of the slopes (u and v) are obtained,
and assuming that t0 is the time of the earliest storm
cell in the cluster, the value of x0 can be obtained
by computing the median value of x(t) − u(t − t0)
over all the storm cells in the cluster. This value was
shown by [12] to be the value that makes the Kendall
rank correlation coefficient [13] between the actual
storm cell locations and the fitted values on the line
approximately zero.

The clustering method we use is a variant of K-
Means clustering where the cluster center is defined
to be Thiel-Sen fit to the set of points in the cluster
and distance between a storm cell at (x, y, t) and the
cluster is defined to be the Euclidean distance between
the storm cell location and the Theil-Sen estimate at
that time.

The clustering method is as follows:
1) Find an initial estimate of tracks in the dataset.

This can be obtained from any robust storm
tracking algorithm, even a real-time one such as
that of [1], [2], [4].

2) Treating each track (set of storm cells with the
same id) as a cluster, compute the Theil-Sen slope
and constants (u, v, x0, y0, t0) for each cluster.
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Fig. 1. Effect of clustering storm tracks at different scales.

3) For every storm cell in the dataset, find the nearest
cluster. If the nearest cluster is different from the
cluster the cell is currently part of, and if the
distance is less than some reasonable threshold
D, move the storm cell to the nearest cluster.

4) Compute the Theil-Sen fit for each cluster, prune
the set of clusters to remove substantially iden-
tical trajectories and carry out Step 3, repeating
steps 3 and 4 until there are no more changes
or until the number of iterations reaches some
maximum (we used 3 iterations as this maximum
number).

III. EVALUATION

Following [14], we carried out a statistical analysis of
the set of storm tracks extracted from the radar data of
June 17, 2012. At the most detailed (200 km2) scale,
the number of trajectories is cut by about a third as
a result of postanalysis (See Figure 1). The error in
size fit (computed by fitting the sizes of the storm cells
within a trajectory to a “growth-and-decay” parabola
and looking for deviations from that fit – see [14]
for details), an indicator of how likely it is that two
separate tracks are wrongly combined, increases by a
very small amount. The position error, an indicator of
how likely it is that storm cells are added to tracks
they are not part of, also increases but remains limited
to be below the 0.1 decimal degree limit imposed by D.
The fourth panel of Figure 1 demonstrates the benefit of
postanalysis – the mean duration of the tracks increases
by about 50%, from an average of about 2000 seconds
to an average of over 3000 seconds. At the moderate

(600 km2 scale) and coarse (1000 km2 scale), the
behavior is similar. For a very small cost in terms of
potentially wrong associations, one gets a significant
improvement in the form of longer-lived tracks.

ACKNOWLEDGMENTS

Funding for the authors was provided by
NOAA/Office of Oceanic and Atmospheric
Research under NOAA-OU Cooperative Agreement
NA11OAR4320072, U.S. Department of Commerce.

REFERENCES

[1] J. Johnson, P. MacKeen, A. Witt, E. Mitchell, G. Stumpf,
M. Eilts, and K. Thomas, “The storm cell identification
and tracking algorithm: An enhanced WSR-88D algorithm,”
Weather and Forecasting, vol. 13, no. 2, pp. 263–276, 1998.

[2] M. Dixon and G. Wiener, “TITAN: Thunderstorm identifi-
cation, tracking, analysis, and nowcasting — a radar-based
methodology,” Journal of Atmospheric and Oceanic Technol-
ogy, vol. 10, no. 6, pp. 785–797, 1993.

[3] V. Lakshmanan, R. Rabin, and V. DeBrunner, “Multiscale
storm identification and forecast,” Atmospheric Research,
vol. 67, pp. 367–380, 2003.

[4] V. Lakshmanan and T. Smith, “Data mining storm attributes
from spatial grids,” Journal of Atmospheric and Oceanic
Technology, vol. 26, no. 11, pp. 2353–2365, 2009.

[5] B. Antonescu, S. Burcea, and A. Tănase, “Forecasting the
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