# Insert the article title here

INSERT FIRST AUTHOR NAME\*

\*Insert First author address\*

\*Corresponding author: Insert corresponding author email here

Insert Second author name Insert second author address

AND

INSERT THIRD AUTHOR Third author address

[Received on 3 May 2015]

The abstract text goes here.

Keywords: Insert keyword text here.

2000 Math Subject Classification: 34K30, 35K57, 35Q80, 92D25

### 1. Insert A head here

This demo file is intended to serve as a "starter file" for comnet journal papers produced under LATEX using comnet.cls v1.5e.

#### 1.1 Insert B head here

Subsection text here.

1.1.1 Insert C head here Subsubsection text here.

#### 2. Equations

Sample equations.

$$\begin{split} \frac{\partial u(t,x)}{\partial t} &= Au(t,x) \left(1 - \frac{u(t,x)}{K}\right) - B \frac{u(t-\tau,x)w(t,x)}{1 + Eu(t-\tau,x)},\\ \frac{\partial w(t,x)}{\partial t} &= \delta \frac{\partial^2 w(t,x)}{\partial x^2} - Cw(t,x) + D \frac{u(t-\tau,x)w(t,x)}{1 + Eu(t-\tau,x)}, \end{split} \tag{2.1}$$

$$\begin{split} \frac{dU}{dt} &= \alpha U(t)(\gamma - U(t)) - \frac{U(t - \tau)W(t)}{1 + U(t - \tau)}, \\ \frac{dW}{dt} &= -W(t) + \beta \frac{U(t - \tau)W(t)}{1 + U(t - \tau)}. \end{split} \tag{2.2}$$

<sup>©</sup> The author 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

$$\frac{\partial (F_1, F_2)}{\partial (c, \boldsymbol{\omega})}_{(c_0, \boldsymbol{\omega}_0)} = \begin{vmatrix} \frac{\partial F_1}{\partial c} & \frac{\partial F_1}{\partial \boldsymbol{\omega}} \\ \frac{\partial F_2}{\partial c} & \frac{\partial F_2}{\partial \boldsymbol{\omega}} \end{vmatrix}_{(c_0, \boldsymbol{\omega}_0)} = -4c_0q\boldsymbol{\omega}_0 - 4c_0\boldsymbol{\omega}_0p^2 = -4c_0\boldsymbol{\omega}_0(q+p^2) > 0.$$

#### 3. Enunciations

THEOREM 3.1 Assume that  $\alpha > 0, \gamma > 1, \beta > \frac{\gamma+1}{\gamma-1}$ . Then there exists a small  $\tau_1 > 0$ , such that for  $\tau \in [0, \tau_1)$ , if c crosses  $c(\tau)$  from the direction of to a small amplitude periodic traveling wave solution of (2.1), and the period of  $(\check{u}^p(s), \check{w}^p(s))$  is

$$\check{T}(c) = c \cdot \left[ \frac{2\pi}{\omega(\tau)} + O(c - c(\tau)) \right].$$

Condition 3.2 From (0.8) and (2.10), it holds  $\frac{d\omega}{d\tau} < 0, \frac{dc}{d\tau} < 0$  for  $\tau \in [0, \tau_1)$ . This fact yields that the system (2.1) with delay  $\tau > 0$  has the periodic traveling waves for smaller wave speed c than that the system (2.1) with  $\tau = 0$  does. That is, the delay perturbation stimulates an early occurrence of the traveling waves.

# 4. Figures & Tables

The output for figure is:

FIG. 1. Insert figure caption here

An example of a double column floating figure using two subfigures. (The subfig.sty package must be loaded for this to work.) The subfigure \label commands are set within each subfloat command, the \label for the overall figure must come after \caption. \hfil must be used as a separator to get equal spacing. The subfigure.sty package works much the same way, except \subfigure is used instead of \subfloat.

The output for table is:

Table 1. An Example of a Table

| rable 1. 7 m Example of a rable |      |
|---------------------------------|------|
| One                             | Two  |
| Three                           | Four |

# 5. Conclusion

The conclusion text goes here.

+

3 of 3

# INSERT SHORT TITLE HERE FOR RECTO RUNNING HEAD

# Acknowledgment

Insert the Acknowledgment text here.

REFERENCES