Poster Template
Auteur
MD. BAKIBILLA MATUBBAR
Last Updated
il y a 4 mois
License
Creative Commons CC BY 4.0
Résumé
Easy Colorful Design Poster
\documentclass{a0poster}
\usepackage[margin=0cm, paperwidth=90cm, paperheight=120cm]{geometry}
\usepackage{poster}
\begin{document}
\begin{center}
\colorbox{nottblue!100}{%
\begin{minipage}[t]{\textwidth} % Adjusted vertical alignment
\vspace{0.8em} % Add vertical space
\begin{center}
{\fontsize{85pt}{85pt}\selectfont\textbf{\textcolor{white}{Unraveling the Dual Nature of Nonlinear Absorption under Varying Laser Intensities}}}\\[1ex] % Increased font size
\Large \textit{\textcolor{white}{First Author}}\textsuperscript{\textcolor{white}{1}}, \textit{\textcolor{white}{Second Author}}\textsuperscript{\textcolor{white}{1}}, \textit{\textcolor{white}{Corresponding Author}}\textsuperscript{\textcolor{white}{1*}}\\
\textit{\textsuperscript{\textcolor{white}{1}}\textcolor{white}{Department of Physics, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh}}\\
\textit{\textsuperscript{\textcolor{white}{*}}\textcolor{white}{Corresponding author: example-phy@sust.edu}}
\vspace{0em} % Add vertical space
\end{center}
\begin{center}
\begin{tikzpicture}[remember picture,overlay]
% \node [anchor=north west, inner sep=0cm] at ([xshift=4cm,yshift=-5cm]current page.north west)
% {\includegraphics[width=6cm,height=6cm]{logo.png}}; % Adjust position and image
\node [anchor=north east, inner sep=0cm] at ([xshift=-2cm,yshift=-4cm]current page.north east)
{\includegraphics[width=8cm,height=8cm]{logo.png}}; % Adjust position and image
\end{tikzpicture}
\end{center}
\end{minipage}
}
\end{center}
\vspace{-0.8cm}
% Abstract
\coloredsection{vibrantblue!60!white}{Abstract}{}
\coloredsubsection{vibrantblue!10!white}{
\lipsum[1]
\\
\textbf{\Large Keywords:}\textbf{ Norbixin; Z-scan Technique; Third-order Optical Nonlinearity; Nonlinear Optics;}
\vspace{-1em}
}
\begin{multicols}{2} % Two columns
\coloredsection{highlightgreen!60!white}{Introduction}{}
\coloredsubsection{highlightgreen!10!white}{
\begin{minipage}[t]{0.49\linewidth}
\textbf{Two-photon absorption (2PA)} \\
\begin{itemize}
\item[\squareicon{red}] \lipsum[2]
\end{itemize}
\end{minipage}
\hfill
\begin{minipage}[t]{0.49\linewidth}
\textbf{Three-photon absorption (3PA)} \\
\begin{itemize}
\item[\squareicon{red}] \lipsum[2]
\end{itemize}
\end{minipage}
}
% Objectives
\coloredsection{accentorange!80!white}{Objectives}{}
\coloredsubsection{accentorange!10!white}{
\begin{minipage}[t]{\linewidth}
\textbf{The aim of this Research is to :} \\
\begin{itemize}
\item[\squareicon{red}] Determine the process of absorption.
\end{itemize}
\end{minipage}
}
% Methodology
\coloredsection{highlightgreen!60!white}{Methodology}{}
\coloredsubsection{highlightgreen!10!white}{
% Methodology content here
\begin{minipage}[t]{\linewidth}
\begin{Box3}{}
\begin{itemize}
\item[\circleicon{red}] Higher order nonlinearity OA transmission [5]:
\begin{equation}
\displaystyle T_{mPA}(z) = 1-\displaystyle\frac{\alpha_m I_0^{m-1} L_{\text{eff}}^{(m)}}{(1 + {z^2/z_0^2})^{m-1}} \frac{1}{m^{3/2}}
\end{equation}
\item[\circleicon{blue}] Normalized Transmittance at (\(z=0\)) determined from equation (1).
\begin{equation}
\displaystyle T_{2PA}= 1-\displaystyle{\alpha_{2}I_{0}L^{(2)}_{\text{eff}}}/{2^{3/2}}
\end{equation}
\begin{equation}
\displaystyle T_{3PA} = 1 - \displaystyle{\displaystyle \alpha_{3}I_{0}^{2}L^{(3)}_{\text{eff}}}/{3^{3/2}}
\end{equation}
\item[\circleicon{highlightgreen}] $\chi^2$ is calculated by
\begin{equation}
\chi^2 = \displaystyle {\sum \frac{(O_i - E_i)^2}{E_i}}
\end{equation}
\item[\circleicon{black}] Null Hypothesis [$\text{H}_0$:] Observed non-linearity due to 2PA alone.
\item[\circleicon{accentorange}] Alternative Hypothesis [$\text{H}_1$:] Non-linearity suggests 3PA.
\end{itemize}
\tcblower
\begin{tcolorbox}[colback=white!80!accentorange,colframe=white!0!red,width=\linewidth]
$m$ $\rightarrow$ the order of absorption\\
${I_0}$ $\rightarrow$ laser incident intensity\\
\(L_{\text{eff}}^{(m)} = \displaystyle\frac{1 - \exp\left(-(m-1)\alpha_0 L\right)}{(m-1)\alpha_0} \)\\
${z_0}$ $\rightarrow$ Rayleigh length
\end{tcolorbox}
\begin{tcolorbox}[colback=white!80!vibrantblue,colframe=white!10!blue,width=\linewidth]
${\alpha_0}$ $\rightarrow$ linear absorption coefficient\\
${\alpha_2}$ $\rightarrow$ 2PA coefficient \\
${\alpha_3}$ $\rightarrow$ 3PA coefficient \\
\end{tcolorbox}
\begin{tcolorbox}[colback=white!80!highlightgreen,colframe=white!10!green,width=\linewidth]
${O_i}$ $\rightarrow$ observed value in category $i$\\
${E_i}$ $\rightarrow$ expected value in category $i$ (from model) \\
\end{tcolorbox}
\end{Box3}
\end{minipage}
}
\end{multicols}
% % \clearpage
% \begin{multicols}{2} % Two columns
\coloredsection{lightgray!60!white}{Results and Analyses}{}
\coloredsubsection{lightgray!10!white}{
\begin{minipage}[t]{\linewidth}
\begin{Box1}{}
\begin{figure}[H]
\includegraphics[width=\textwidth,keepaspectratio]{least1.png}
{\fontsize{35pt}{35pt}\selectfont Figure 1: The Open Aperture Z-scan profiles with least square method of the material at different intensities.}
\label{fig:least1}
\end{figure}
\tcblower
\begin{tcolorbox}
[colback=white!60!lightgray,colframe=white!20!red]
\begin{figure}[H]
\includegraphics[width=\textwidth,keepaspectratio]{chsquare.png}
{\fontsize{35pt}{35pt}\selectfont Figure 3: Comparison of $\chi^2$ under varying intensity for 2PA and 3PA.}
\label{fig:absorption}
\end{figure}
\end{tcolorbox}
\end{Box1}
\begin{Box1}{}
\begin{figure}[H]
\includegraphics[width=\textwidth,keepaspectratio]{abimag1.png}
{\fontsize{35pt}{35pt}\selectfont Figure 2: The Open Aperture Z-scan profiles with Eq$^n$-(2) and (3) of the material at different intensities.}
\label{fig:absorption1}
\end{figure}
\tcblower
\begin{tcolorbox}
[colback=white!60!lightgray,colframe=white!20!red]
\begin{table}[H]
\begin{longtable}{cccccccccc}
\caption{{\fontsize{35pt}{35pt}\selectfont Calculations of $\chi^2$, two ($\alpha_2$) and three ($\alpha_3$)-photon absorption coefficients.}}\\
\toprule
$I_0$ & \multicolumn{2}{c}{$\chi^2$ (2PA)} & \multicolumn{2}{c}{$\chi^2$ (3PA)} & \multicolumn{2}{c}{$\alpha_2$ (cm/W)} & \multicolumn{2}{c}{$\alpha_3$ (cm$^3$/W$^2$)}\\
\cmidrule(lr){2-3} \cmidrule(lr){4-5} \cmidrule(lr){6-7} \cmidrule(lr){8-9}
(GW/cm$^{2}$) & L.S.M & Eq$^n$-(2) & L.S.M & Eq$^n$-(3) & L.S.M & Eq$^n$-(2) & L.S.M & Eq$^n$-(3) \\
& & & & & ($\times 10^{-13}$) & ($\times 10^{-23}$) & ($\times 10^{-13}$) & ($\times 10^{-23}$)\\
\midrule
\endfirsthead
\multicolumn{10}{c}%
{{\tablename\ \thetable{} -- continued from previous page}} \\
\toprule
$I_0$ & \multicolumn{2}{c}{$\chi^2$ (2PA)} & \multicolumn{2}{c}{$\chi^2$ (3PA)} & \multicolumn{2}{c}{$\alpha_2$ (cm/W)} & \multicolumn{2}{c}{$\alpha_3$ (cm$^3$/W$^2$)}\\
\cmidrule(lr){2-3} \cmidrule(lr){4-5} \cmidrule(lr){6-7} \cmidrule(lr){8-9}
& Fit & Eq$^n$-(2) & Fit & Eq$^n$-(3) & Fit & Eq$^n$-(2) & Fit & Eq$^n$-(3) \\
& & & & & ($\times 10^{-13}$) & ($\times 10^{-23}$) & ($\times 10^{-13}$) & ($\times 10^{-23}$)\\
\midrule
\endhead
\midrule \multicolumn{10}{r}{{Continued on next page}} \\ \bottomrule
\endfoot
\bottomrule
\endlastfoot
129 & 0.0025 & 0.0149 & 0.0019 & 0.0021 & 1.08 & 0.56 & 1.35 & 8.10 \\
249 & 0.0273 & 0.1497 & 0.0187 & 0.0341 & 4.42 & 1.23 & 2.25 & 9.10 \\
309 & 0.0731 & 0.4429 & 0.0514 & 0.0795 & 4.71 & 1.47 & 1.98 & 8.78\\
339 & 0.0966 & 0.5297 & 0.0641 & 0.1128 & 5.58 & 1.59 & 2.12 & 8.61 \\
369 & 0.1281 & 0.7170 & 0.0880 & 0.1557 & 6.06 & 1.68 & 2.07 & 8.36 \\
\bottomrule
\end{longtable}
\end{table}
\end{tcolorbox}
\end{Box1}
\end{minipage}
}
\begin{multicols}{2}
% Conclusions
\coloredsection{accentorange!80!white}{Summary}{}
\coloredsubsection{accentorange!10!white}{
\begin{minipage}[t]{\linewidth}
\begin{itemize}
\item[\circleicon{blue}] \lipsum[4]
\end{itemize}
\end{minipage}
}
\vspace{1cm}
% References
\coloredsection{lightgray!50!white}{References}{}
\coloredsubsection{lightgray!80!white}{
\begin{minipage}[t]{\linewidth}
% % References content here
% \bibliographystyle{unsrt}
% \bibliography{name}
\begin{enumerate}
\item Brito e Silva, N. J., et al. (2022). Third- and fifth-order optical nonlinearities of norbixin. \textit{Results in Optics}, \textbf{6}, 100205.
\end{enumerate}
\end{minipage}
}
\end{multicols}
% Acknowledgements
\coloredsection{vibrantblue!60!white}{Acknowledgements}{}
\vspace{0cm}
\coloredsubsection{vibrantblue!10!white}{
\Large I would like to acknowledge the professors, staff, and students of the Nonlinear Optics Research and Bio-Optics Research Laboratory who provided support during this work.}
% \textit{Finally, I am very thankful to my wonderful friend \textbf{ Md. Fazle Rabbi Khan} who was beside me all the time, encouraging and inspiring me.}
\coloredsubsection{red!50!white}{
\begin{minipage}[t]{\linewidth}
% \colorbox{highlightgreen!10!white}{%
% \begin{minipage}{\textwidth}
\begin{center}{\Large
\textit{National Conference on Physics for the 21st Century}\\[1ex]
\textit{May 18, 2024 } | \textit{Physics Discipline, University name.}}
\end{center}
\end{minipage}
}
\end{document}