Assignment One
Auteur:
Kenneth Iannello
Last Updated:
il y a 10 ans
License:
Creative Commons CC BY 4.0
Résumé:
Modern Algebra HW
\begin
Discover why 18 million people worldwide trust Overleaf with their work.
\begin
Discover why 18 million people worldwide trust Overleaf with their work.
\documentclass[a4paper]{article}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage[colorinlistoftodos]{todonotes}
\title{Assignment One}
\author{Ken Iannello}
\date{\today}
\begin{document}
\maketitle
\begin{abstract}
Modern Algebra HW
\end{abstract}
\section{Introduction}
In this assignment we will go over 6 proofs that we have recently derived from the Axioms of integer arithmetic off the assumption those Axioms are all we know. These Axioms can be found in the Notebook written by Dr. Oscar Chavez titled\textit{Modern Algebra}
\section{Problems}
\label{sec:examples}
\subsection{Prove that \textit{a\textit{*0 =0}}}
\begin{itemize}
\item a*0=0 ==
\end{itemize}
\begin{itemize}
\item a*0+0=0 ==
\end{itemize}
\begin{itemize}
\item a*0+(a-a)=0 ==
\end{itemize}
\begin{itemize}
\item (a*0+a)-a=0 ==
\end{itemize}
\begin{itemize}
\item a(0+1)-a =0 ==
\end{itemize}
\begin{itemize}
\item a-a=0 ==
\end{itemize}
\begin{itemize}
\item 0=0 QED
\end{itemize}
\todo[inline, color=green!40]{We have proven a*0=0 .}
\subsection{Prove that -(ab)=a(-b)}
\todo[inline, color=green!40]{We have proven a*0=0 .}
\begin{itemize}
\item a*0=0 ==
\end{itemize}
\begin{itemize}
\item a(b+(-b))=0 ==
\end{itemize}
\begin{itemize}
\item (ab)+a(-b)=0 ==
\end{itemize}
\begin{itemize}
\item ab+a(-b)-ab=0-ab ==
\end{itemize}
\begin{itemize}
\item a(-b)=-(ab) QED
\end{itemize}
\todo[inline, color=green!40]{We have proven a(-b)=-(ab) .}
\subsection{Prove that (-a)(-b)=ab}
\todo[inline, color=green!40]{We know a+(-a)=0 and b+(-b)=0 .}
\begin{itemize}
\item (a+(-a))(b+(-b))=0 ==
\end{itemize}
\begin{itemize}
\item ab+a(-b)+(-a)b+(-a)(-b)=0 ==
\end{itemize}
\todo[inline, color=green!40]{We have proven a(-b)=-(ab) .}
\begin{itemize}
\item ab+(-(ab))+(-(ab))+(-a)(-b)=0 ==
\end{itemize}
\begin{itemize}
\item (-(ab))+(-a)(-b)=0 ==
\end{itemize}
\begin{itemize}
\item(-(ab))+(ab)+(-a)(-b)=0+(ab ==
\end{itemize}
\begin{itemize}
\item (-a)(-b)=ab QED
\end{itemize}
\todo[inline, color=green!40]{We have proven (-a)(-b)=ab .}
\subsection{ Prove For all integers \textit{a} and \textit{b}, if \textit{ab}=0 and \textit{a} does not = 0, then \textit{b}=0}
\todo[inline, color=green!40]{Case 1: if b is greater than 0}
\begin{itemize}
\item If a does not equal zero and bis greater than 0 then ab does NOT equal 0
\end{itemize}
\todo[inline, color=green!40]{Case 2: if b is less than 0}
\begin{itemize}
\item If a does not equal zero and b is less than 0 than ab does NOT equal 0
\end{itemize}
\todo[inline, color=green!40]{Case 3: if b = 0}
\begin{itemize}
\item If a does not equal zero and b=0 than ab=0
\end{itemize}
\todo[inline, color=green!40]{Proposition proved}
\subsection{Prove that, for all integers \textit{a},\textit{b}, and \textit{c}, if \textit{ac}=\textit{bc} and \textit{c} does not = 0, then \textit{a}=\textit{b} }
\begin{itemize}
\item ac = bc ==
\end{itemize}
\begin{itemize}
\item ac-(bc)=bc-(bc) ==
\end{itemize}
\begin{itemize}
\item ac-bc=0 ==
\end{itemize}
\begin{itemize}
\item c(a-b)=0 ==
\end{itemize}
\todo[inline, color=green!40]{if c can not equal zero we have proven (a-b) must equal 0 .}
\begin{itemize}
\item a-b=0 ==
\end{itemize}
\begin{itemize}
\item a=b QED
\end{itemize}
\todo[inline, color=green!40]{We have proven a=b.}
\subsection{Let \textit{a}.\textit{b}, and \textit{c} be integers such that \textit{a}+\textit{b}=\textit{a}+\textit{c}. Prove \textit{b}=\textit{c}}
\begin{itemize}
\item a+b=a+c ==
\end{itemize}
\todo[inline, color=green!40]{a has such additive inverse such that a+(-a) =0. We will add it to both sides of the equation}
\begin{itemize}
\item a+b+(-a)=a+c+(-a) ==
\end{itemize}
\begin{itemize}
\item b=c QED
\end{itemize}
\todo[inline, color=green!40]{We have proven b=c.}
\end{document}